661 research outputs found

    Anomalous conductivity tensor in the Dirac semimetal Na_3Bi

    Full text link
    Na3Bi is a Dirac semimetal with protected nodes that may be sensitive to the breaking of time-reversal invariance in a magnetic field B. We report experiments which reveal that both the conductivity and resistivity tensors exhibit robust anomalies in B. The resistivity ρxx\rho_{xx} is B-linear up to 35 T, while the Hall angle exhibits an unusual profile approaching a step-function. The conductivities σxx\sigma_{xx} and σxy\sigma_{xy} share identical power-law dependences at large B. We propose that these significant deviations from conventional transport result from an unusual sensitivity of the transport lifetime to B. Comparison with Cd3As2 is made.Comment: 8 pages, 5 figure

    A method for aligning RNA secondary structures and its application to RNA motif detection

    Get PDF
    BACKGROUND: Alignment of RNA secondary structures is important in studying functional RNA motifs. In recent years, much progress has been made in RNA motif finding and structure alignment. However, existing tools either require a large number of prealigned structures or suffer from high time complexities. This makes it difficult for the tools to process RNAs whose prealigned structures are unavailable or process very large RNA structure databases. RESULTS: We present here an efficient tool called RSmatch for aligning RNA secondary structures and for motif detection. Motivated by widely used algorithms for RNA folding, we decompose an RNA secondary structure into a set of atomic structure components that are further organized by a tree model to capture the structural particularities. RSmatch can find the optimal global or local alignment between two RNA secondary structures using two scoring matrices, one for single-stranded regions and the other for double-stranded regions. The time complexity of RSmatch is O(mn) where m is the size of the query structure and n that of the subject structure. When applied to searching a structure database, RSmatch can find similar RNA substructures, and is capable of conducting multiple structure alignment and iterative database search. Therefore it can be used to identify functional RNA motifs. The accuracy of RSmatch is tested by experiments using a number of known RNA structures, including simple stem-loops and complex structures containing junctions. CONCLUSION: With respect to computing efficiency and accuracy, RSmatch compares favorably with other tools for RNA structure alignment and motif detection. This tool shall be useful to researchers interested in comparing RNA structures obtained from wet lab experiments or RNA folding programs, particularly when the size of the structure dataset is large

    On the Pointwise Behavior of Recursive Partitioning and Its Implications for Heterogeneous Causal Effect Estimation

    Full text link
    Decision tree learning is increasingly being used for pointwise inference. Important applications include causal heterogenous treatment effects and dynamic policy decisions, as well as conditional quantile regression and design of experiments, where tree estimation and inference is conducted at specific values of the covariates. In this paper, we call into question the use of decision trees (trained by adaptive recursive partitioning) for such purposes by demonstrating that they can fail to achieve polynomial rates of convergence in uniform norm, even with pruning. Instead, the convergence may be poly-logarithmic or, in some important special cases, such as honest regression trees, fail completely. We show that random forests can remedy the situation, turning poor performing trees into nearly optimal procedures, at the cost of losing interpretability and introducing two additional tuning parameters. The two hallmarks of random forests, subsampling and the random feature selection mechanism, are seen to each distinctively contribute to achieving nearly optimal performance for the model class considered
    corecore