43 research outputs found
Patients' ratings of genetic conditions validate a taxonomy to simplify decisions about preconception carrier screening via genome sequencing
Advances in genome sequencing and gene discovery have created opportunities to efficiently assess more genetic conditions than ever before. Given the large number of conditions that can be screened, the implementation of expanded carrier screening using genome sequencing will require practical methods of simplifying decisions about the conditions for which patients want to be screened. One method to simplify decision making is to generate a taxonomy based on expert judgment. However, expert perceptions of condition attributes used to classify these conditions may differ from those used by patients. To understand whether expert and patient perceptions differ, we asked women who had received preconception genetic carrier screening in the last 3 years to fill out a survey to rate the attributes (predictability, controllability, visibility, and severity) of several autosomal recessive or X-linked genetic conditions. These conditions were classified into one of five taxonomy categories developed by subject experts (significantly shortened lifespan, serious medical problems, mild medical problems, unpredictable medical outcomes, and adult-onset conditions). A total of 193 women provided 739 usable ratings across 20 conditions. The mean ratings and correlations demonstrated that participants made distinctions across both attributes and categories. Aggregated mean attribute ratings across categories demonstrated logical consistency between the key features of each attribute and category, although participants perceived little difference between the mild and serious categories. This study provides empirical evidence for the validity of our proposed taxonomy, which will simplify patient decisions for results they would like to receive from preconception carrier screening via genome sequencing
Generating a taxonomy for genetic conditions relevant to reproductive planning
As genome or exome sequencing (hereafter genome-scale sequencing) becomes more integrated into standard care, carrier testing is an important possible application. Carrier testing using genome-scale sequencing can identify a large number of conditions, but choosing which conditions/genes to evaluate as well as which results to disclose can be complicated. Carrier testing generally occurs in the context of reproductive decision-making and involves patient values in a way that other types of genetic testing may not. The Kaiser Permanente Clinical Sequencing Exploratory Research program is conducting a randomized clinical trial of preconception carrier testing that allows participants to select their preferences for results from among broad descriptive categories rather than selecting individual conditions. This paper describes 1) the criteria developed by the research team, the return of results committee (RORC), and stakeholders for defining the categories; 2) the process of refining the categories based on input from patient focus groups and validation through a patient survey; and, 3) how the RORC then assigned specific gene-condition pairs to taxonomy categories being piloted in the trial. The development of four categories (serious, moderate/mild, unpredictable, late onset) for sharing results allows patients to select results based on their values without separately deciding their interest in knowing their carrier status for hundreds of conditions. A fifth category, lifespan limiting, was always shared. The lessons learned may be applicable in other results disclosure situations, such as incidental findings
Genome sequencing and carrier testing: decisions on categorization and whether to disclose results of carrier testing
We are investigating the use of genome sequencing for preconception carrier testing. Genome sequencing could identify one or more of thousands of X-linked or autosomal recessive conditions that could be disclosed during preconception or prenatal counseling. Therefore, a framework that helps both clinicians and patients understand the possible range of findings is needed to respect patient preferences by ensuring that information about only the desired types of genetic conditions are provided to a given patient
Clinical Sequencing Exploratory Research Consortium: Accelerating Evidence-Based Practice of Genomic Medicine
Despite rapid technical progress and demonstrable effectiveness for some types of diagnosis and therapy, much remains to be learned about clinical genome and exome sequencing (CGES) and its role within the practice of medicine. The Clinical Sequencing Exploratory Research (CSER) consortium includes 18 extramural research projects, one National Human Genome Research Institute (NHGRI) intramural project, and a coordinating center funded by the NHGRI and National Cancer Institute. The consortium is exploring analytic and clinical validity and utility, as well as the ethical, legal, and social implications of sequencing via multidisciplinary approaches; it has thus far recruited 5,577 participants across a spectrum of symptomatic and healthy children and adults by utilizing both germline and cancer sequencing. The CSER consortium is analyzing data and creating publically available procedures and tools related to participant preferences and consent, variant classification, disclosure and management of primary and secondary findings, health outcomes, and integration with electronic health records. Future research directions will refine measures of clinical utility of CGES in both germline and somatic testing, evaluate the use of CGES for screening in healthy individuals, explore the penetrance of pathogenic variants through extensive phenotyping, reduce discordances in public databases of genes and variants, examine social and ethnic disparities in the provision of genomics services, explore regulatory issues, and estimate the value and downstream costs of sequencing. The CSER consortium has established a shared community of research sites by using diverse approaches to pursue the evidence-based development of best practices in genomic medicine
Reliability of <it>KRAS</it> mutation testing in metastatic colorectal cancer patients across five laboratories
Abstract Background Mutations in the KRAS gene are associated with poor response to epidermal growth factor receptor inhibitors used in the treatment of metastatic colorectal cancer. Factors influencing KRAS test results in tumor specimens include: tumor heterogeneity, sample handling, slide preparation, techniques for tumor enrichment, DNA preparation, assay design and sensitivity. We evaluated comparability and consistency of KRAS test results among five laboratories currently being used to determine KRAS mutation status of metastatic colorectal cancer specimens in a large, multi-center observational study. Findings Twenty formalin-fixed paraffin-embedded human colorectal cancer samples from colon resections previously tested for KRAS mutations were selected based on mutation status (6 wild type, 8 codon 12 mutations, and 6 codon 13 mutations). We found good agreement across laboratories despite differences in mutation detection methods. Eighteen of twenty samples (90%) were concordant across all five labs. Discordant results are likely not due to laboratory error, but instead to tumor heterogeneity, contamination of the tumor sample with normal tissue, or analytic factors affecting assay sensitivity. Conclusions Our results indicate commercial and academic laboratories provide reliable results for the common KRAS gene mutations at codons 12 and 13 when an adequate percentage of tumor cells is present in the sample.</p
Recommended from our members
Stakeholder perspectives on implementing a universal lynch syndrome screening program: A qualitative study of early barriers and facilitators
Background: Evidence-based guidelines recommend that all newly diagnosed colon cancers be screened for Lynch syndrome (LS). Best practices for implementing universal tumor screening have not been extensively studied. Purpose We interviewed a range of stakeholders in an integrated health care system to identify initial factors that might promote or hinder the successful implementation of a universal (LS) screening program. Methods: We conducted interviews with health plan leaders, managers, and staff. Interviews were audio recorded and transcribed. Thematic analysis began with a grounded approach and was also guided by the Practical Robust Implementation and Sustainability Model (PRISM). Results: We completed 14 interviews with leaders/managers and staff representing involved clinical and health plan departments. While in general stakeholders supported the concept of universal screening, they identified several internal (organizational) and external (environment) factors that promote/hinder implementation. Facilitating factors included: 1) perceived benefits of screening for patients and organization; 2) collaboration between departments; and 3) availability of organizational resources. Barriers were also found, including: 1) lack of awareness of guidelines; 2) lack of guideline clarity; 3) staffing and program “ownership” concerns; and 4) cost uncertainties. Analysis also revealed nine important infrastructure-type considerations for successful implementation. Conclusion: We found that clinical, laboratory, and administrative departments supported universal tumor screening for LS. Requirements for successful implementation may include interdepartmental collaboration and communication; patient and provider/staff education; and significant infrastructure and resource support related to laboratory processing and systems for electronic ordering and tracking
Recommended from our members
Consent for clinical genome sequencing: considerations from the Clinical Sequencing Exploratory Research Consortium
Implementing genome and exome sequencing in clinical practice presents challenges, including obtaining meaningful informed consent. Consent may be challenging due to test limitations such as uncertainties associated with test results and interpretation, complexity created by the potential for additional findings and high patient expectations. We drew on the experiences of research teams within the Clinical Sequencing Exploratory Research (CSER1) Consortium on informed consent for clinical genome and exome sequencing (CGES) to negotiate consensus considerations. We present six considerations for clinicians and 12 key points to communicate as they support patients in deciding whether to undergo CGES. These considerations and key points provide a helpful starting point for informed consent to CGES, grounded in the Clinical Sequencing Exploratory Research (CSER1) experience
Development and early implementation of an Accessible, Relational, Inclusive and Actionable approach to genetic counseling: The ARIA model
ObjectiveTo describe the training and early implementation of the ARIA model of genetic counseling (Accessible, Relational, Inclusive, Actionable).MethodsAs part of the Cancer Health Assessments Reaching Many (CHARM) study, an interdisciplinary workgroup developed the ARIA curriculum and trained genetic counselors to return exome sequencing results using the ARIA model.CurriculumThe ARIA curriculum includes didactic elements, discussion, readings, role plays, and observations of usual care genetic counseling sessions. The ARIA model provides the skills and strategies needed for genetic counseling to be accessible to all patients, regardless of prior knowledge or literacy level; involves appropriate psychological and social counseling without overwhelming the patient with information; and leaves the patient with clear and actionable next steps.ConclusionWith sufficient training and practice, the ARIA model appears to be feasible, with promise for ensuring that genetic counselors' communication is accessible, relational, inclusive and actionable for the diverse patients participating in genomic medicine.Practice implicationsARIA offers a coherent set of principles and strategies for effective communication with patients of all literacy levels and outlines specific techniques to practice and incorporate these skills into routine practice. The ARIA model could be integrated into genetic counseling training programs and practice, making genetic counseling more accessible and meaningful for all patients