34 research outputs found

    Unique V3 Loop Sequence Derived from the R2 Strain of HIV-Type 1 Elicits Broad Neutralizing Antibodies

    Get PDF
    DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies. In this study, DNA vaccines were constructed to express the gp120 subunit of Env from the isolate HIV-1R2 using both wild-type and codon- ptimized gene sequences. Three copies of the murine C3d were added to the carboxyl terminus to enhance the immunogenicity of the expressed fusion protein. Mice (BALB/c) vaccinated with DNA plasmid expressing the gp120R2 using codon-optimized Env sequences elicited high-titer anti-Env antibodies regardless of conjugation to C3d. In contrast, only mice vaccinated with DNA using wild-type gp120R2 sequences fused to mC3d3, had detectable anti- Env antibodies. Interestingly, mice vaccinated with DNA expressing gp120R2 from codon-optimized sequences elicited antibodies that neutralized both homologous and heterologous HIV-1 isolates. To determine if the unique sequence found in the crown of the V3 loop of the EnvR2 was responsible for the elicitation of the cross-clade neutralizing antibodies, the codons encoding for the Pro-Met (amino acids 313–314) were introduced into the sequences encoding the gp120ADA (R5) or gp12089.6 (R5X4). Mice vaccinated with gp120ADA–mC3d3–DNA with the Pro–Met mutation had antibodies that neutralized HIV-1 infection, but not the gp12089.6–mC3d3–DNA. Therefore, the use of the unique sequences in the EnvR2 introduced into an R5 tropic envelope, in conjunction with C3d fusion, was effective at broadening the number of viruses that could be neutralized. However, the introduction of this same sequence into an R5X4-tropic envelope was ineffective in eliciting improved cross-clade neutralizing antibodies. Originally published AIDS Research and Human Retroviruses, Vol. 20, No. 11, Nov 200

    Characterization of the cysteine-rich secretory protein 3 gene as an early-transcribed gene with a putative role in the pathophysiology of Sjögren's syndrome

    No full text
    Objective. To identify genes that may participate in the pathophysiology of Sjögren's syndrome (SS), the technique of differential display was applied to labial minor salivary gland (MSG) biopsy samples. Methods. Total RNA was isolated from MSG biopsy samples from a woman with primary SS and a control subject, and the differential display protocol with 8 different random oligonucleotide primers was performed. One particular differentially expressed fragment showed 98% homology with the cysteine-rich secretory protein 3 (CRISP-3) gene. The result was verified by reverse transcription-polymerase chain reaction (RT-PCR) with messenger RNA (mRNA) samples from MSG biopsy tissues obtained from 4 women with primary SS. A CRISP-3 RNA probe was synthesized for in situ hybridization of 7 MSG biopsy samples from patients with primary SS. In an attempt to interpret the expression of CRISP-3, normal peripheral blood lymphocytes (PBLs) were activated in vitro at different time points and assayed for CRISP-3 expression. Finally, B cells were transfected with the coding region of CRISP-3 and monitored for the up-regulation of different B cell activation markers. Results. The CRISP-3 gene was detected by RT-PCR in all SS patients tested. Mainly the mononuclear cells infiltrating the MSGs of patients expressed CRISP-3 mRNA. In addition, CRISP-3 was detected by RT-PCR between 30 minutes and 6 hours in phorbol myristate acetate-activated normal PBLs, while staurosporine inhibited this expression. CRISP-3-transfected B cells exhibited an up-regulation in CD25 surface expression. Conclusion. The CRISP-3 gene is identified as a novel early response gene that may participate in the pathophysiology of the autoimmune lesions of SS

    Conditional up-regulation of IL-2 production by p38 MAPK inactivation is mediated by increased Erk1/2 activity

    No full text
    The p38 mitogen-activated protein kinase regulates many cellular processes in almost all eukaryotic cell types. In T cells, p38 was shown to regulate thymic development and cytokine production. Here, the role of p38 on interleukin-2 (IL-2) production by human peripheral blood CD4+ T cells was examined. When T cells were stimulated under weak stimulation conditions, pharmaceutical and molecular p38 inhibitors induced a dramatic increase of IL-2 production. In contrast, IL-2 levels were not affected significantly when strong stimulation was provided to T cells. The increase in IL-2 production, following p38 inhibition, was associated with a strong up-regulation of extracellular signal-regulated kinase (Erk)1/2 activity. Furthermore the Erk inhibitor U0126 was able to counteract the effect of p38 inhibition on IL-2 production, supporting the conclusion that p38 mediates its effect through Erk. These results suggest that the p38 kinase, through its ability to control Erk activation levels, acts as a gatekeeper, which prevents inappropriate IL-2 production. Also, the finding that p38 acts in a strength-of-stimulation-dependent way provides an explanation for previously reported, contradictory results regarding the role of this kinase in IL-2 expression. © Society for Leukocyte Biology

    Conditional up-regulation of IL-2 production by p38 MAPK inactivation is mediated by increased Erk1/2 activity

    No full text
    The p38 mitogen-activated protein kinase regulates many cellular processes in almost all eukaryotic cell types. In T cells, p38 was shown to regulate thymic development and cytokine production. Here, the role of p38 on interleukin-2 (IL-2) production by human peripheral blood CD4+ T cells was examined. When T cells were stimulated under weak stimulation conditions, pharmaceutical and molecular p38 inhibitors induced a dramatic increase of IL-2 production. In contrast, IL-2 levels were not affected significantly when strong stimulation was provided to T cells. The increase in IL-2 production, following p38 inhibition, was associated with a strong up-regulation of extracellular signal-regulated kinase (Erk)1/2 activity. Furthermore the Erk inhibitor U0126 was able to counteract the effect of p38 inhibition on IL-2 production, supporting the conclusion that p38 mediates its effect through Erk. These results suggest that the p38 kinase, through its ability to control Erk activation levels, acts as a gatekeeper, which prevents inappropriate IL-2 production. Also, the finding that p38 acts in a strength-of-stimulation-dependent way provides an explanation for previously reported, contradictory results regarding the role of this kinase in IL-2 expression
    corecore