745 research outputs found

    High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis

    Get PDF
    Aims: High-sensitivity cardiac troponin I (cTnI) assays hold promise in detecting the transition from hypertrophy to heart failure in aortic stenosis. We sought to investigate the mechanism for troponin release in patients with aortic stenosis and whether plasma cTnI concentrations are associated with long-term outcome. Methods and results: Plasma cTnI concentrations were measured in two patient cohorts using a high-sensitivity assay. First, in the Mechanism Cohort, 122 patients with aortic stenosis (median age 71, 67% male, aortic valve area 1.0 ± 0.4 cm2) underwent cardiovascular magnetic resonance and echocardiography to assess left ventricular (LV) myocardial mass, function, and fibrosis. The indexed LV mass and measures of replacement fibrosis (late gadolinium enhancement) were associated with cTnI concentrations independent of age, sex, coronary artery disease, aortic stenosis severity, and diastolic function. In the separate Outcome Cohort, 131 patients originally recruited into the Scottish Aortic Stenosis and Lipid Lowering Trial, Impact of REgression (SALTIRE) study, had long-term follow-up for the occurrence of aortic valve replacement (AVR) and cardiovascular deaths. Over a median follow-up of 10.6 years (1178 patient-years), 24 patients died from a cardiovascular cause and 60 patients had an AVR. Plasma cTnI concentrations were associated with AVR or cardiovascular death HR 1.77 (95% CI, 1.22 to 2.55) independent of age, sex, systolic ejection fraction, and aortic stenosis severity. Conclusions: In patients with aortic stenosis, plasma cTnI concentration is associated with advanced hypertrophy and replacement myocardial fibrosis as well as AVR or cardiovascular death

    Amine-Gold Linked Single-Molecule Junctions: Experiment and Theory

    Full text link
    The measured conductance distribution for single molecule benzenediamine-gold junctions, based on 59,000 individual conductance traces recorded while breaking a gold point contact in solution, has a clear peak at 0.0064 G0_{0} with a width of ±\pm 40%. Conductance calculations based on density functional theory (DFT) for 15 distinct junction geometries show a similar spread. Differences in local structure have a limited influence on conductance because the amine-Au bonding motif is well-defined and flexible. The average calculated conductance (0.046 G0_{0}) is seven times larger than experiment, suggesting the importance of many-electron corrections beyond DFT

    Sounding stellar cycles with Kepler - II. Ground-based observations

    Full text link
    We have monitored 20 Sun-like stars in the Kepler field-of-view for excess flux with the FIES spectrograph on the Nordic Optical Telescope since the launch of Kepler spacecraft in 2009. These 20 stars were selected based on their asteroseismic properties to sample the parameter space (effective temperature, surface gravity, activity level etc.) around the Sun. Though the ultimate goal is to improve stellar dynamo models, we focus the present paper on the combination of space-based and ground-based observations can be used to test the age-rotation-activity relations. In this paper we describe the considerations behind the selection of these 20 Sun-like stars and present an initial asteroseismic analysis, which includes stellar age estimates. We also describe the observations from the Nordic Optical Telescope and present mean values of measured excess fluxes. These measurements are combined with estimates of the rotation periods obtained from a simple analysis of the modulation in photometric observations from Kepler caused by starspots, and asteroseismic determinations of stellar ages, to test relations between between age, rotation and activity.Comment: Accepted for publication in MNRA

    Functional Characterization of the N-Acetylmuramyl-l-Alanine Amidase, Ami1, from Mycobacterium abscessus.

    Full text link
    Peptidoglycan (PG) is made of a polymer of disaccharides organized as a three-dimensional mesh-like network connected together by peptidic cross-links. PG is a dynamic structure that is essential for resistance to environmental stressors. Remodeling of PG occurs throughout the bacterial life cycle, particularly during bacterial division and separation into daughter cells. Numerous autolysins with various substrate specificities participate in PG remodeling. Expression of these enzymes must be tightly regulated, as an excess of hydrolytic activity can be detrimental for the bacteria. In non-tuberculous mycobacteria such as Mycobacterium abscessus, the function of PG-modifying enzymes has been poorly investigated. In this study, we characterized the function of the PG amidase, Ami1 from M. abscessus. An ami1 deletion mutant was generated and the phenotypes of the mutant were evaluated with respect to susceptibility to antibiotics and virulence in human macrophages and zebrafish. The capacity of purified Ami1 to hydrolyze muramyl-dipeptide was demonstrated in vitro. In addition, the screening of a 9200 compounds library led to the selection of three compounds inhibiting Ami1 in vitro. We also report the structural characterization of Ami1 which, combined with in silico docking studies, allows us to propose a mode of action for these inhibitors

    Highly Conducting pi-Conjugated Molecular Junctions Covalently Bonded to Gold Electrodes

    Full text link
    We measure electronic conductance through single conjugated molecules bonded to Au metal electrodes with direct Au-C covalent bonds using the scanning tunneling microscope based break-junction technique. We start with molecules terminated with trimethyltin end groups that cleave off in situ resulting in formation of a direct covalent sigma bond between the carbon backbone and the gold metal electrodes. The molecular carbon backbone used in this study consist of a conjugated pi-system that has one terminal methylene group on each end, which bonds to the electrodes, achieving large electronic coupling of the electrodes to the pi-system. The junctions formed with the prototypical example of 1,4-dimethylenebenzene show a conductance approaching one conductance quantum (G0 = 2e2/h). Junctions formed with methylene terminated oligophenyls with two to four phenyl units show a hundred-fold increase in conductance compared with junctions formed with amine-linked oligophenyls. The conduction mechanism for these longer oligophenyls is tunneling as they exhibit an exponential dependence of conductance with oligomer length. In addition, density functional theory based calculations for the Au-xylylene-Au junction show near-resonant transmission with a cross-over to tunneling for the longer oligomers.Comment: Accepted to the Journal of the American Chemical Society as a Communication

    Update to the study protocol, including statistical analysis plan for a randomized clinical trial comparing comprehensive cardiac rehabilitation after heart valve surgery with control: the CopenHeartVR trial

    Get PDF
    Comparative StudyRandomized Controlled TrialThis is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: Heart valve diseases are common with an estimated prevalence of 2.5% in the Western world. The number is rising because of an ageing population. Once symptomatic, heart valve diseases are potentially lethal, and heavily influence daily living and quality of life. Surgical treatment, either valve replacement or repair, remains the treatment of choice. However, post-surgery, the transition to daily living may become a physical, mental and social challenge. We hypothesize that a comprehensive cardiac rehabilitation program can improve physical capacity and self-assessed mental health and reduce hospitalization and healthcare costs after heart valve surgery. METHODS: This randomized clinical trial, CopenHeartVR, aims to investigate whether cardiac rehabilitation in addition to usual care is superior to treatment as usual after heart valve surgery. The trial will randomly allocate 210 patients 1:1 to an intervention or a control group, using central randomization, and blinded outcome assessment and statistical analyses. The intervention consists of 12 weeks of physical exercise and a psycho-educational intervention comprising five consultations. The primary outcome is peak oxygen uptake (VO2 peak) measured by cardiopulmonary exercise testing with ventilatory gas analysis. The secondary outcome is self-assessed mental health measured by the standardized questionnaire Short Form-36. Long-term healthcare utilization and mortality as well as biochemistry, echocardiography and cost-benefit will be assessed. A mixed-method design will be used to evaluate qualitative and quantitative findings, encompassing a survey-based study before the trial and a qualitative pre- and post-intervention study. CONCLUSION: This randomized clinical trial will contribute with evidence of whether cardiac rehabilitation should be provided after heart valve surgery. The study is approved by the local regional Research Ethics Committee (H-1-2011-157), and the Danish Data Protection Agency (j.nr. 2007-58-0015). TRIAL REGISTRATION: Trial registered 16 March 2012; ClinicalTrials.gov ( NCT01558765 ).This work is supported by the Strategic Research Council, The Heart Centre Research Foundation Rigshospitalet, Familien Hede Nielsens Fond, The Regional Research Council of Region Sealand (Denmark), The National Institute of Public Health, and the University of Southern Denmark

    Efficiency of Energy Conversion in Thermoelectric Nanojunctions

    Full text link
    Using first-principles approaches, this study investigated the efficiency of energy conversion in nanojunctions, described by the thermoelectric figure of merit ZTZT. We obtained the qualitative and quantitative descriptions for the dependence of ZTZT on temperatures and lengths. A characteristic temperature: T0=β/γ(l)T_{0}= \sqrt{\beta/\gamma(l)} was observed. When TT0T\ll T_{0}, ZTT2ZT\propto T^{2}. When TT0T\gg T_{0}, ZTZT tends to a saturation value. The dependence of ZTZT on the wire length for the metallic atomic chains is opposite to that for the insulating molecules: for aluminum atomic (conducting) wires, the saturation value of ZTZT increases as the length increases; while for alkanethiol (insulating) chains, the saturation value of ZTZT decreases as the length increases. ZTZT can also be enhanced by choosing low-elasticity bridging materials or creating poor thermal contacts in nanojunctions. The results of this study may be of interest to research attempting to increase the efficiency of energy conversion in nano thermoelectric devices.Comment: 2 figure
    corecore