32 research outputs found

    Dietary Polyphenols in Cancer Chemoprevention: Implications in Pancreatic Cancer

    Get PDF
    Naturally occurring dietary agents present in a wide variety of plant products, are rich sources of phytochemicals possessing medicinal properties, and thus, have been used in folk medicine for ages to treat various ailments. The beneficial effects of such dietary components are frequently attributed to their anti-inflammatory and antioxidant properties, particularly in regards to their antineoplastic activities. As many tumor types exhibit greater oxidative stress levels that are implicated in favoring autonomous cell growth activation, most chemotherapeutic agents can also enhance tumoral oxidative stress levels in part via generating reactive oxygen species (ROS). While ROS-mediated imbalance of the cellular redox potential can provide novel drug targets, as a consequence, this ROS-mediated excessive damage to cellular functions, including oncogenic mutagenesis, has also been implicated in inducing chemoresistance. This remains one of the major challenges in the treatment and management of human malignancies. Antioxidant-enriched natural compounds offer one of the promising approaches in mitigating some of the underlying mechanisms involved in tumorigenesis and metastasis, and therefore, have been extensively explored in cancer chemoprevention. Among various groups of dietary phytochemicals, polyphenols have been extensively explored for their underlying chemopreventive mechanisms in other cancer models. Thus, the current review highlights the significance and mechanisms of some of the highly studied polyphenolic compounds, with greater emphasis on pancreatic cancer chemoprevention

    The mushroom Ganoderma lucidum suppresses breast-to-lung cancer metastasis through the inhibition of pro-invasive genes.

    Get PDF
    Breast cancer metastasis is one of the major reasons for the high morbidity and mortality of breast cancer patients. In spite of surgical interventions, chemotherapy, radiation therapy and targeted therapy, some patients are considering alternative therapies with herbal/natural products. In the present study, we evaluated a well-characterized extract from the medicinal mushroom Ganoderma lucidum (GLE) for its affects on tumor growth and breast-to-lung cancer metastasis. MDA-MB-231 human breast cancer cells were implanted into the mammary fat pads of nude mice. GLE (100 mg/kg/every other day) was administered to the mice by an oral gavage for 4 weeks, and tumor size was measured using microcalipers. Lung metastases were evaluated by hematoxylin and eosin (H&E) staining. Gene expression in MDA-MB-231 cells was determined by DNA microarray analysis and confirmed by quantitative PCR. Identified genes were silenced by siRNA, and cell migration was determined in Boyden chambers and by wound-healing assay. Although an oral administration of GLE only slightly suppressed the growth of large tumors, the same treatment significantly inhibited the number of breast-to-lung cancer metastases. GLE also downregulated the expression of genes associated with invasive behavior (HRAS, VIL2, S100A4, MCAM, I2PP2A and FN1) i

    Myeloid-Derived Suppressor Cells and Pancreatic Cancer: Implications in Novel Therapeutic Approaches

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) remains a devastating human malignancy with poor prognosis and low survival rates. Several cellular mechanisms have been linked with pancreatic carcinogenesis and also implicated in inducing tumor resistance to known therapeutic regimens. Of various factors, immune evasion mechanisms play critical roles in tumor progression and impeding the efficacy of cancer therapies including PDAC. Among immunosuppressive cell types, myeloid-derived suppressor cells (MDSCs) have been extensively studied and demonstrated to not only support PDAC development but also hamper the anti-tumor immune responses elicited by therapeutic agents. Notably, recent efforts have been directed in devising novel approaches to target MDSCs to limit their effects. Multiple strategies including immune-based approaches have been explored either alone or in combination with therapeutic agents to target MDSCs in preclinical and clinical settings of PDAC. The current review highlights the roles and mechanisms of MDSCs as well as the implications of this immunomodulatory cell type as a potential target to improve the efficacy of therapeutic regimens for PDAC

    ReishiMax, mushroom based dietary supplement, inhibits adipocyte differentiation, stimulates glucose uptake and activates AMPK

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a health hazard which is closely associated with various complications including insulin resistance, hypertension, dyslipidemia, atherosclerosis, type 2 diabetes and cancer. In spite of numerous preclinical and clinical interventions, the prevalence of obesity and its related disorders are on the rise demanding an urgent need for exploring novel therapeutic agents that can regulate adipogenesis. In the present study, we evaluated whether a dietary supplement ReishiMax (RM), containing triterpenes and polysaccharides extracted from medicinal mushroom <it>Ganoderma lucidum</it>, affects adipocyte differentiation and glucose uptake in 3T3-L1 cells.</p> <p>Methods</p> <p>3T3-L1 pre-adipocytes were differentiated into adipocytes and treated with RM (0-300 μg/ml). Adipocyte differentiation/lipid uptake was evaluated by oil red O staining and triglyceride and glycerol concentrations were determined. Gene expression was evaluated by semi-quantitative RT-PCR and Western blot analysis. Glucose uptake was determined with [<sup>3</sup>H]-glucose.</p> <p>Results</p> <p>RM inhibited adipocyte differentiation through the suppresion of expression of adipogenic transcription factors peroxisome proliferator-activated receptor-γ (PPAR-γ), sterol regulatory element binding element protein-1c (SREBP-1c) and CCAAT/enhancer binding protein-α (C/EBP-α). RM also suppressed expression of enzymes and proteins responsible for lipid synthesis, transport and storage: fatty acid synthase (FAS), acyl-CoA synthetase-1 (ACS1), fatty acid binding protein-4 (FABP4), fatty acid transport protein-1 (FATP1) and perilipin. RM induced AMP-activated protein kinase (AMPK) and increased glucose uptake by adipocytes.</p> <p>Conclusion</p> <p>Our study suggests that RM can control adipocyte differentiation and glucose uptake. The health benefits of ReishiMax warrant further clinical studies.</p

    NAHA, a Novel Hydroxamic Acid-Derivative, Inhibits Growth and Angiogenesis of Breast Cancer In Vitro and In Vivo

    Get PDF
    BACKGROUND: We have recently synthesized novel N-alkylated amino acid-derived hydroxamate, 2-[Benzyl-(2-nitro-benzenesulfonyl)-amino]-N-hydroxy-3-methyl-N-propyl-butyramide (NAHA). Here, we evaluate the anticancer activity of NAHA against highly invasive human breast cancer cells MDA-MB-231 in vitro and in vivo. METHODOLOGY/PRINCIPAL FINDINGS: Cell growth was evaluated by MTT and soft agar assays. Protein expression was determined by DNA microarray and Western blot analysis. Metastatic potential was evaluated by cell adhesion, migration, invasion, capillary morphogenesis, and ELISA assays. The anticancer activity in vivo was evaluated in mouse xenograft model. NAHA inhibited proliferation and colony formation of MDA-MB-231 cells together with the down-regulation of expression of Cdk2 and CDC20 proteins. NAHA inhibited cell adhesion, migration, and invasion through the suppression of secretion of uPA. NAHA suppressed secretion of VEGF from MDA-MB-231 cells and inhibited capillary morphogenesis of human aortic endothelial cells (HAECs). Finally, NAHA at 50 mg/kg was not toxic and decreased tumor volume and tumor weight in vivo. This suppression of tumor growth was associated with the inhibition of mitotic figures and induction of apoptosis, and the reduction of CD31 and VEGF positive cells in tumors. CONCLUSION: NAHA could be a novel promising compound for the development of new drugs for the therapy of invasive breast cancers

    Melatonin as a Repurposed Drug for Melanoma Treatment

    No full text
    Melanoma is the most aggressive type of skin cancer, with a greater risk of metastasis and a higher prevalence and mortality rate. This cancer type has been demonstrated to develop resistance to the known treatment options such as conventional therapeutic agents and targeted therapy that are currently being used as the standard of care. Drug repurposing has been explored as a potential alternative treatment strategy against disease pathophysiologies, including melanoma. To that end, multiple studies have suggested that melatonin produced by the pineal gland possesses anti-proliferative and oncostatic effects in experimental melanoma models. The anticarcinogenic activity of melatonin is attributed to its ability to target a variety of oncogenic signaling pathways, including the MAPK pathways which are involved in regulating the behavior of cancer cells, including cell survival and proliferation. Additionally, preclinical studies have demonstrated that melatonin in combination with chemotherapeutic agents exerts synergistic effects against melanoma. The goal of this review is to highlight the mechanistic insights of melatonin as a monotherapy or combinational therapy for melanoma treatment

    Exploiting the relevance of CA 19-9 in pancreatic cancer

    No full text
    Pancreatic ductal adenocarcinoma (PDAC) is currently the fourth most common cause of cancer-related deaths in the United States. It has a poor prognosis and remains a difficulty to treat malignancy. Over the past several decades, significant efforts have been directed towards developing new approaches to enhance the efficacy of therapeutic regimens for PDAC treatment. In recent years, the measurement of serum carbohydrate antigen 19-9 (CA 19-9) has become one of the most validated and extensively used tumour biomarkers for PDAC. In particular, serum CA 19-9 levels have been explored as a validated tool to predict either the signs of disease progression or the response to treatment. However, despite its clinical relevance, the implications on diagnosis or accurately predicting tumour resectability, and monitoring disease symptoms in PDAC patients remains limited. This current review highlights the recent updates on the applicability of CA 19-9, its exploitation, and challenges in predicting the treatment efficacy and responses in PDAC patients

    Effects of miRNA-149-5p and Platelet-Activating Factor-Receptor Signaling on the Growth and Targeted Therapy Response on Lung Cancer Cells

    No full text
    Accumulating evidence indicates that microRNAs (miRs) play critical roles in essentially all biological processes and their altered expression has been documented in various disease conditions, including human malignancies. Although several cellular mechanisms have been identified in mediating the effects of miRs, the involvement of G-protein-coupled, platelet-activating factor-receptor (PAFR) signaling in miR-149-5p-induced effects on lung cancer growth and therapeutic potential has not been studied. To that end, we first evaluated the functional significance of PAFR and miR-149-5p in A549 and H1299 human non-small cell lung cancer (NSCLC) cell lines. We observed that these tumor lines express endogenous PAFR and miR-149-5p and that PAFR activation by PAF agonist (CPAF) significantly increased, whereas miR-149-5p mimic transfection inhibited cell proliferation in a dose-dependent manner. Interestingly, miR-149-5p mimic significantly attenuated CPAF-mediated increased proliferation of NSCLC cells, as confirmed by miR-149-5p, cyclin D1, and forkhead box protein M1 (FOXM1) expression analysis via qPCR. Our next studies examined PAFR- and miR-149-5p-mediated effects on targeted therapy (i.e., erlotinib and gefitinib) responses. We observed that erlotinib and gefitinib inhibited A549 and H1299 cell survival in a dose- and time-dependent manner, and CPAF significantly blocked this effect. These findings indicate that miR-149-5p blocks PAFR-mediated increased cell proliferation, and PAFR activation attenuates the cytotoxic effects of targeted therapy

    Therapeutic Implications of PTEN in Non-Small Cell Lung Cancer

    No full text
    Lung cancer remains one of the major human malignancies affecting both men and women worldwide, with non-small cell lung cancer (NSCLC) being the most prevalent type. Multiple mechanisms have been identified that favor tumor growth as well as impede the efficacy of therapeutic regimens in lung cancer patients. Among tumor suppressor genes that play critical roles in regulating cancer growth, the phosphatase and tensin homolog (PTEN) constitutes one of the important family members implicated in controlling various functional activities of tumor cells, including cell proliferation, apoptosis, angiogenesis, and metastasis. Notably, clinical studies have also documented that lung tumors having an impaired, mutated, or loss of PTEN are associated with low survival or high tumor recurrence rates. To that end, PTEN has been explored as a promising target for anti-cancer agents. Importantly, the ability of PTEN to crosstalk with several signaling pathways provides new approaches to devise effective treatment options for lung cancer treatment. The current review highlights the significance of PTEN and its implications in therapeutic approaches against NSCLC
    corecore