1,262 research outputs found

    Development of an acoustic vorticity meter to measure shear in ocean-boundary layers

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1995This thesis describes the analysis and development of an acoustic vorticity meter to measure shear in ocean-boundary layers over smaller measurement volumes than previously possible. A nonintrusive measurement of vorticity would filter out irrotational motion such as surface waves and currents that can swamp small scale measurements of shear. The thesis describes the desired geophysical measurements and translates this oceanographic context into design goals. The instrument was designed, built, tested, and deployed. It measures three-axis vorticity at 0.83 and 2.45 meters below the ocean surface with measurement volumes of 0.45 meters on a side. The instrument forms a buoy that is inertially instrumented to calculate and remove buoy motion from the measurements. The instrument uses a complementary filter algorithm to estimate attitude and motion from low-power, inexpensive, strapdown rate gyros, accelerometers, and fluxgate magnetometers. The instrument performance has been measured to have a vorticity bias of not more than 1 x 10-2 per second in a mean flow of 0.7 meters per second, a bias of not more than 1 x 10-2 per second in the down-wave and vertical directions in typical ocean waves, and a 30 decibel spectral rejection of surface wave velocity. Two instrument deployments are described to show the potential of the system. The instrument has measured shear in the upper-ocean-boundary layer, and these measurements are compared to concurrently measured wind stress and stratification. The instrument was also deployed, tethered in the thermocline, in an area of high internal wave activity. Richardson-number time series were measured and compared favorably to concurrently measured Richardson numbers made over a larger spatial scale.Support for this project was received from National Science Foundation grants OCE-9018623 and OCE-9314357, Office of Naval Research grant N00014-89-J-1058, and a Keck Foundation instrumentation initiative grant

    Effect of blade geometry on the aerodynamic loads produced by vertical-axis wind turbines

    Get PDF
    Accurate aerodynamic modelling of vertical-axis wind turbines poses a significant challenge. The rotation of the turbine induces large variations in the angle of attack of its blades that can manifest as dynamic stall. In addition, interactions between the blades of the turbine and the wake that they produce can result in impulsive changes to the aerodynamic loading. The Vorticity Transport Model has been used to simulate the aerodynamic performance and wake dynamics of three different vertical-axis wind turbine configurations. It is known that vertical-axis turbines with either straight or curved blades deliver torque to their shaft that fluctuates at the blade passage frequency of the rotor. In contrast, a turbine with helically twisted blades delivers a relatively steady torque to the shaft. In this article, the interactions between helically twisted blades and the vortices within their wake are shown to result in localized perturbations to the aerodynamic loading on the rotor that can disrupt the otherwise relatively smooth power output that is predicted by simplistic aerodynamic tools that do not model the wake to sufficient fidelity. Furthermore, vertical-axis wind turbines with curved blades are shown to be somewhat more susceptible to local dynamic stall than turbines with straight blades

    Growth rate effects in soft CoFe films

    Get PDF
    We report on growth rate effects in sputter-deposited CoFe films prepared using high target utilization sputtering technology (HiTUS). We find that the grain structure of these polycrystalline films is closely related to the growth rate. By changing the growth rate, samples were prepared with different grain structure, which in turn had the effect of changing the magnetic properties of the films. We demonstrate control of the coercivity, which varied by a factor of more than ten. This was achieved via grain size control in CoFe films of thickness 20 nm. Furthermore, by employing a two-step sputtering process, in which two extreme growth rates are used sequentially, we were able to tune the saturation magnetization

    SLC15 family of peptide transporters in GtoPdb v.2023.1

    Get PDF
    The Solute Carrier 15 (SLC15) family of peptide transporters, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their key role in the cellular uptake of di- and tripeptides (di/tripeptides). Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from overall dietary protein digestion, SLC15A2 (PEPT2) mainly allows renal tubular reuptake of di/tripeptides from ultrafiltration and brain-to-blood efflux of di/tripeptides in the choroid plexus, SLC15A3 (PHT2) and SLC15A4 (PHT1) interact with both di/tripeptides and histidine, e.g. in certain immune cells, and SLC15A5 has unknown physiological function. In addition, the SLC15 family of peptide transporters variably interacts with a very large number of peptidomimetics and peptide-like drugs. It is conceivable, based on the currently acknowledged structural and functional differences, to divide the SLC15 family of peptide transporters into two subfamilies [3]

    SLC15 family of peptide transporters in GtoPdb v.2021.3

    Get PDF
    The Solute Carrier 15 (SLC15) family of peptide transporters, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their key role in the cellular uptake of di- and tripeptides (di/tripeptides). Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from overall dietary protein digestion, SLC15A2 (PEPT2) mainly allows renal tubular reuptake of di/tripeptides from ultrafiltration and brain-to-blood efflux of di/tripeptides in the choroid plexus, SLC15A3 (PHT2) and SLC15A4 (PHT1) interact with both di/tripeptides and histidine, e.g. in certain immune cells, and SLC15A5 has unknown physiological function. In addition, the SLC15 family of peptide transporters variably interacts with a very large number of peptidomimetics and peptide-like drugs. It is conceivable, based on the currently acknowledged structural and functional differences, to divide the SLC15 family of peptide transporters into two subfamilies [3]

    SLC36 family of proton-coupled amino acid transporters (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Members of the SLC36 family of proton-coupled amino acid transporters are involved in membrane transport of amino acids and derivatives. The four transporters show variable tissue expression patterns and are expressed in various cell types at the plasma-membrane and in intracellular organelles. PAT1 is expressed at the luminal surface of the small intestine and absorbs amino acids and derivatives [3]. In lysosomes, PAT1 functions as an efflux mechanism for amino acids produced during intralysosomal proteolysis [2, 15]. PAT2 is expressed at the apical membrane of the renal proximal tubule [5] and at the plasma-membrane in brown/beige adipocytes [17]. PAT1 and PAT4 are involved in regulation of the mTORC1 pathway [8]. More comprehensive lists of substrates can be found within the reviews under Further Reading and in the references

    SLC36 family of proton-coupled amino acid transporters in GtoPdb v.2021.3

    Get PDF
    Members of the SLC36 family of proton-coupled amino acid transporters are involved in membrane transport of amino acids and derivatives. The four transporters show variable tissue expression patterns and are expressed in various cell types at the plasma-membrane and in intracellular organelles. PAT1 is expressed at the luminal surface of the small intestine and absorbs amino acids and derivatives [3]. In lysosomes, PAT1 functions as an efflux mechanism for amino acids produced during intralysosomal proteolysis [2, 18]. PAT2 is expressed at the apical membrane of the renal proximal tubule [6] and at the plasma-membrane in brown/beige adipocytes [20]. PAT1 and PAT4 are involved in regulation of the mTORC1 pathway [11]. More comprehensive lists of substrates can be found within the reviews under Further Reading and in the references [3]

    SLC36 family of proton-coupled amino acid transporters in GtoPdb v.2023.1

    Get PDF
    Members of the SLC36 family of proton-coupled amino acid transporters are involved in membrane transport of amino acids and derivatives [29, 30]. The four transporters show variable tissue expression patterns and are expressed in various cell types at the plasma-membrane and in intracellular organelles. PAT1 is expressed at the luminal surface of the small intestine and absorbs amino acids and derivatives [4]. In lysosomes, PAT1 functions as an efflux mechanism for amino acids produced during intralysosomal proteolysis [2, 26]. PAT2 is expressed at the apical membrane of the renal proximal tubule [7] and at the plasma-membrane in brown/beige adipocytes [31]. PAT1 and PAT4 are involved in regulation of the mTORC1 pathway [12, 28]. More comprehensive lists of substrates can be found within the reviews under Further Reading and in the references [3]

    Ekman veering, internal waves, and turbulence observed under Arctic sea ice

    Get PDF
    Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1306–1328, doi:10.1175/JPO-D-12-0191.1.The ice–ocean system is investigated on inertial to monthly time scales using winter 2009–10 observations from the first ice-tethered profiler (ITP) equipped with a velocity sensor (ITP-V). Fluctuations in surface winds, ice velocity, and ocean velocity at 7-m depth were correlated. Observed ocean velocity was primarily directed to the right of the ice velocity and spiraled clockwise while decaying with depth through the mixed layer. Inertial and tidal motions of the ice and in the underlying ocean were observed throughout the record. Just below the ice–ocean interface, direct estimates of the turbulent vertical heat, salt, and momentum fluxes and the turbulent dissipation rate were obtained. Periods of elevated internal wave activity were associated with changes to the turbulent heat and salt fluxes as well as stratification primarily within the mixed layer. Turbulent heat and salt fluxes were correlated particularly when the mixed layer was closest to the freezing temperature. Momentum flux is adequately related to velocity shear using a constant ice–ocean drag coefficient, mixing length based on the planetary and geometric scales, or Rossby similarity theory. Ekman viscosity described velocity shear over the mixed layer. The ice–ocean drag coefficient was elevated for certain directions of the ice–ocean shear, implying an ice topography that was characterized by linear ridges. Mixing length was best estimated using the wavenumber of the beginning of the inertial subrange or a variable drag coefficient. Analyses of this and future ITP-V datasets will advance understanding of ice–ocean interactions and their parameterizations in numerical models.Support for this study and the overall ITP program was provided by the National Science Foundation and Woods Hole Oceanographic Institution. Support for S. Cole was partially though the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Devonshire Foundation.2014-11-0
    • …
    corecore