1,822 research outputs found

    The absence of efficient dual pairs of spanning trees in planar graphs

    Full text link
    A spanning tree T in a finite planar connected graph G determines a dual spanning tree T* in the dual graph G such that T and T* do not intersect. We show that it is not always possible to find T in G, such that the diameters of T and T* are both within a uniform multiplicative constant (independent of G) of the diameters of their ambient graphs.Comment: 7 pages, 3 figure

    Homologous non-isotopic symplectic tori in a K3-surface

    Full text link
    For each member of an infinite family of homology classes in the K3-surface E(2), we construct infinitely many non-isotopic symplectic tori representing this homology class. This family has an infinite subset of primitive classes. We also explain how these tori can be non-isotopically embedded as homologous symplectic submanifolds in many other symplectic 4-manifolds including the elliptic surfaces E(n) for n>2.Comment: 15 pages, 9 figures; v2: extended the main theorem, gave a second construction of symplectic tori, added a figure, added/updated references, minor changes in figure

    Reconstructing the global topology of the universe from the cosmic microwave background

    Get PDF
    If the universe is multiply-connected and sufficiently small, then the last scattering surface wraps around the universe and intersects itself. Each circle of intersection appears as two distinct circles on the microwave sky. The present article shows how to use the matched circles to explicitly reconstruct the global topology of space.Comment: 6 pages, 2 figures, IOP format. To be published in the proceedings of the Cleveland Cosmology and Topology Workshop 17-19 Oct 1997. Submitted to Class. Quant. Gra

    The Generalized Ricci Flow for 3D Manifolds with One Killing Vector

    Full text link
    We consider 3D flow equations inspired by the renormalization group (RG) equations of string theory with a three dimensional target space. By modifying the flow equations to include a U(1) gauge field, and adding carefully chosen De Turck terms, we are able to extend recent 2D results of Bakas to the case of a 3D Riemannian metric with one Killing vector. In particular, we show that the RG flow with De Turck terms can be reduced to two equations: the continual Toda flow solved by Bakas, plus its linearizaton. We find exact solutions which flow to homogeneous but not always isotropic geometries

    Circles in the Sky: Finding Topology with the Microwave Background Radiation

    Get PDF
    If the universe is finite and smaller than the distance to the surface of last scatter, then the signature of the topology of the universe is writ large on the microwave background sky. We show that the microwave background will be identified at the intersections of the surface of last scattering as seen by different ``copies'' of the observer. Since the surface of last scattering is a two-sphere, these intersections will be circles, regardless of the background geometry or topology. We therefore propose a statistic that is sensitive to all small, locally homogeneous topologies. Here, small means that the distance to the surface of last scatter is smaller than the ``topology scale'' of the universe.Comment: 14 pages, 10 figures, IOP format. This paper is a direct descendant of gr-qc/9602039. To appear in a special proceedings issue of Class. Quant. Grav. covering the Cleveland Topology & Cosmology Worksho

    Cooperative program for design, fabrication, and testing of graphite/epoxy composite helicopter shafting

    Get PDF
    The fabrication of UH-1 helicopter tail rotor drive shafts from graphite/epoxy composite materials is discussed. Procedures for eliminating wrinkles caused by lack of precure compaction are described. The development of the adhesive bond between aluminum end couplings and the composite tube is analyzed. Performance tests to validate the superiority of the composite materials are reported

    Measuring Topological Chaos

    Full text link
    The orbits of fluid particles in two dimensions effectively act as topological obstacles to material lines. A spacetime plot of the orbits of such particles can be regarded as a braid whose properties reflect the underlying dynamics. For a chaotic flow, the braid generated by the motion of three or more fluid particles is computed. A ``braiding exponent'' is then defined to characterize the complexity of the braid. This exponent is proportional to the usual Lyapunov exponent of the flow, associated with separation of nearby trajectories. Measuring chaos in this manner has several advantages, especially from the experimental viewpoint, since neither nearby trajectories nor derivatives of the velocity field are needed.Comment: 4 pages, 6 figures. RevTeX 4 with PSFrag macro

    Right-veering diffeomorphisms of compact surfaces with boundary II

    Full text link
    We continue our study of the monoid of right-veering diffeomorphisms on a compact oriented surface with nonempty boundary, introduced in [HKM2]. We conduct a detailed study of the case when the surface is a punctured torus; in particular, we exhibit the difference between the monoid of right-veering diffeomorphisms and the monoid of products of positive Dehn twists, with the help of the Rademacher function. We then generalize to the braid group B_n on n strands by relating the signature and the Maslov index. Finally, we discuss the symplectic fillability in the pseudo-Anosov case by comparing with the work of Roberts [Ro1,Ro2].Comment: 25 pages, 5 figure

    Twin paradox and space topology

    Get PDF
    If space is compact, then a traveller twin can leave Earth, travel back home without changing direction and find her sedentary twin older than herself. We show that the asymmetry between their spacetime trajectories lies in a topological invariant of their spatial geodesics, namely the homotopy class. This illustrates how the spacetime symmetry invariance group, although valid {\it locally}, is broken down {\it globally} as soon as some points of space are identified. As a consequence, any non--trivial space topology defines preferred inertial frames along which the proper time is longer than along any other one.Comment: 6 pages, latex, 3 figure

    Geometry and observables in (2+1)-gravity

    Full text link
    We review the geometrical properties of vacuum spacetimes in (2+1)-gravity with vanishing cosmological constant. We explain how these spacetimes are characterised as quotients of their universal cover by holonomies. We explain how this description can be used to clarify the geometrical interpretation of the fundamental physical variables of the theory, holonomies and Wilson loops. In particular, we discuss the role of Wilson loop observables as the generators of the two fundamental transformations that change the geometry of (2+1)-spacetimes, grafting and earthquake. We explain how these variables can be determined from realistic measurements by an observer in the spacetime.Comment: Talk given at 2nd School and Workshop on Quantum Gravity and Quantum Geometry (Corfu, September 13-20 2009); 10 pages, 13 eps figure
    • …
    corecore