492 research outputs found
Small scale lateral superlattices in two-dimensional electron gases prepared by diblock copolymer masks
A poly(styrene-block-methylmethacrylate) diblock copolymer in the hexagonal
cylindrical phase has been used as a mask for preparing a periodic gate on top
of a Ga[Al]As-heterostructure. A superlattice period of 43 nm could be imposed
onto the two-dimensional electron gas. Transport measurements show a
characteristic positive magnetoresistance around zero magnetic field which we
interpret as a signature of electron motion guided by the superlattice
potential.Comment: 3 pages, 3 figure
Fluctuation effects in the theory of microphase separation of diblock copolymers in the presence of an electric field
We generalize the Fredrickson-Helfand theory of the microphase separation in
symmetric diblock copolymer melts by taking into account the influence of a
time-independent homogeneous electric field on the composition fluctuations
within the self-consistent Hartree approximation. We predict that electric
fields suppress composition fluctuations, and consequently weaken the
first-order transition. In the presence of an electric field the critical
temperature of the order-disorder transition is shifted towards its mean-field
value. The collective structure factor in the disordered phase becomes
anisotropic in the presence of the electric field. Fluctuational modulations of
the order parameter along the field direction are strongest suppressed. The
latter is in accordance with the parallel orientation of the lamellae in the
ordered state.Comment: 16 page
The Controlled Synthesis of Carbon Tubes and Rods by Template-Assisted Twin Polymerization
The application of porous carbon is versatile. It is used for high-performance catalyst support, electrode material in batteries, and gas storage. In each of these application fields nanostructuring improves the material properties. Supercapacitors store a high energy density. Exactly adapted carbon structures increase the life of lithium batteries and protect catalysts with increasing reaction rate and selectivity. Most of porous carbon materials have a spherical shape. To the best of our knowledge, there is no procedure to synthesize nanostructured cylindrical porous carbon systematically. Here, template glass fibres and SiO2-tubes were modified with nanostructured SiO2/phenolic resin and SiO2/poly(furfuryl alcohol) layers by surface twin polymerization (TP) of 2,2′-spirobi[4H-1,3,2-benzodioxasiline] and tetrafurfuryloxysilane. Afterwards the SiO2/polymer layer on the template is thermally transformed into a defect-free nanostructured SiO2/carbon layer. After completely removing the SiO2 components microporous carbon tubes or rods are finally achieved. The diameters of the carbon rods and the inner as well as the outer diameter of the carbon tubes are adjustable according to the shape and size of the template. Thus, a huge variety of microporous carbon materials can be easily produced by template-assisted TP
Coherent X-ray Scattering from Manganite Charge and Orbital Domains
We report coherent x-ray scattering studies of charge and orbital domains in
manganite systems. The experiments were carried out on LaMnO_3 and
Pr_{0.6}Ca_{0.4}MnO_3, with the incident photon energy tuned near the Mn K
edge. At room temperature, the orbital speckle pattern of LaMnO_3 was observed
to be constant over a timescale of at least minutes, which is indicative of
static orbital domains on this timescale. For Pr_{0.6}Ca_{0.4}MnO_3, both
charge and orbital speckle patterns were observed. The observation of the
latter rules out the presence of fast orbital fluctuations, while long time
series data-- on the order of several minutes-- were suggestive of slow dynamic
behavior. In contrast, the charge order speckle patterns were static.Comment: 6 pages, 4 figure
Interfaces in Diblocks: A Study of Miktoarm Star Copolymers
We study AB miktoarm star block copolymers in the strong segregation
limit, focussing on the role that the AB interface plays in determining the
phase behavior. We develop an extension of the kinked-path approach which
allows us to explore the energetic dependence on interfacial shape. We consider
a one-parameter family of interfaces to study the columnar to lamellar
transition in asymmetric stars. We compare with recent experimental results. We
discuss the stability of the A15 lattice of sphere-like micelles in the context
of interfacial energy minimization. We corroborate our theory by implementing a
numerically exact self-consistent field theory to probe the phase diagram and
the shape of the AB interface.Comment: 12 pages, 11 included figure
Determination of the Michel Parameters rho, xi, and delta in tau-Lepton Decays with tau --> rho nu Tags
Using the ARGUS detector at the storage ring DORIS II, we have
measured the Michel parameters , , and for
decays in -pair events produced at
center of mass energies in the region of the resonances. Using
as spin analyzing tags, we find , , , , and . In addition, we report
the combined ARGUS results on , , and using this work
und previous measurements.Comment: 10 pages, well formatted postscript can be found at
http://pktw06.phy.tu-dresden.de/iktp/pub/desy97-194.p
A Search for the Electric Dipole Moment of the Tau-Lepton
Using the ARGUS detector at the e+e- storage ring DORIS II, we have searched
for the real and imaginary part of the electric dipole formfactor d_tau of the
tau lepton in the production of tau pairs at q^2=100 GeV^2. This is the first
direct measurement of this CP violating formfactor. We applied the method of
optimised observables which takes into account all available information on the
observed tau decay products. No evidence for CP violation was found, and we
derive the following results: Re(d_tau)=(1.6+-.9)*10^(-16) ecm and
Im(d_tau)=(-0.2+-0.8)*10^(-16) ecm, where statistical and systematic errors
have been combined.Comment: 8 pages, 5 figures (10 subfigures
Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires
Highly ordered Ni nanotube and nanowire arrays were fabricated via electrodeposition. The Ni microstructures and the process of the formation were investigated using conventional and high-resolution transmission electron microscope. Herein, we demonstrated the systematic fabrication of Ni nanotube and nanowire arrays and proposed an original growth mechanism. With the different deposition time, nanotubes or nanowires can be obtained. Tubular nanostructures can be obtained at short time, while nanowires take longer time to form. This formation mechanism is applicable to design and synthesize other metal nanostructures and even compound nanostuctures via template-based electrodeposition
- …