30 research outputs found

    Renal Denervation Reduces Pulmonary Vascular Remodeling and Right Ventricular Diastolic Stiffness in Experimental Pulmonary Hypertension

    Get PDF
    Neurohormonal overactivation plays an important role in pulmonary hypertension (PH). In this context, renal denervation, which aims to inhibit the neurohormonal systems, may be a promising adjunct therapy in PH. In this proof-of-concept study, we have demonstrated in 2 experimental models of PH that renal denervation delayed disease progression, reduced pulmonary vascular remodeling, lowered right ventricular afterload, and decreased right ventricular diastolic stiffness, most likely by suppression of the renin-angiotensin-aldosterone system

    The central role of ubiquitin-specific protease 8 in leptin signaling pathway in pulmonary arterial hypertension

    No full text
    International audienceAims: Leptin receptor (ObR-b) is overexpressed in pulmonary artery smooth muscle cells (PA-SMCs) from pulmonary arterial hypertension (PAH) patients and is implicated in both mechanisms that contribute to pulmonary vascular remodeling: hyperproliferation and inflammation. Our aim was to investigate the role of ubiquitin-specific peptidase 8 (USP8) in ObR-b overexpression in PAH. Methods and Results: We performed in situ and in vitro experiments in human lung specimens and isolated PA-SMCs combined with two different in vivo models in rodents and we generated a mouse with an inducible USP8 deletion specifically in smooth muscles. Our results showed an upregulation of USP8 in the smooth muscle layer of distal pulmonary arteries from patients with PAH, and upregulation of USP8 expression in PAH PA-SMCs, compared to controls. USP8 inhibition in PAH PA-SMCs significantly blocked both ObR-b protein expression level at the cell surface as well as ObR-b-dependant intracellular signaling pathway as shown by a significant decrease in pSTAT3 expression. USP8 was required for ObR-b activation in PA-SMCs and its inhibition prevented Ob-mediated cell proliferation through STAT3 pathway. USP8 inhibition by the chemical inhibitor DUBs-IN-2 protected against the development of experimental PH in the two established experimental models of PH. Targeting USP8 specifically in smooth muscle cells in a transgenic mouse model also protected against the development of experimental PH. Conclusions: Our findings highlight the role of USP8 in ObR-b overexpression and pulmonary vascular remodeling in PAH

    Mineralocorticoid Receptor Antagonism by Finerenone Attenuates Established Pulmonary Hypertension in Rats.

    No full text
    International audienceBackground: We studied the ability of the nonsteroidal MR (mineralocorticoid receptor) antagonist finerenone to attenuate vascular remodeling and pulmonary hypertension using two complementary preclinical models (the monocrotaline and sugen/hypoxia rat models) of severe pulmonary hypertension.Methods: We first examined the distribution pattern of MR in the lungs of patients with pulmonary arterial hypertension (PAH) and in monocrotaline and sugen/hypoxia rat lungs. Subsequent studies were performed to explore the effect of MR inhibition on proliferation of pulmonary artery smooth muscle cells derived from patients with idiopathic PAH. To validate the functional importance of MR activation in the pulmonary vascular remodeling characteristic of pulmonary hypertension, mice overexpressing MR (hMR+) were studied, and curative treatments with finerenone (1 mg/kg per day by gavage), started 2 weeks after monocrotaline injection or 5 weeks after Sugen injection were realized.Results: We demonstrated that MR is overexpressed in experimental and human PAH and that its inhibition following siRNA-mediated MR silencing or finerenone treatment attenuates proliferation of pulmonary artery smooth muscle cells derived from patients with idiopathic PAH. In addition, we obtained evidence that hMR+ mice display increased right ventricular systolic pressure, right ventricular hypertrophy, and remodeling of pulmonary arterioles. Consistent with these observations, curative treatments with finerenone partially reversed established pulmonary hypertension, reducing total pulmonary vascular resistance and vascular remodeling. Finally, we found that continued finerenone treatment decreases inflammatory cell infiltration and vascular cell proliferation in monocrotaline and sugen/hypoxia rat lungs.Conclusions: Finerenone treatment appears to be a potential therapy for PAH worthy of investigation and evaluation for clinical use in conjunction with current PAH treatments

    Arsenic trioxide demonstrates efficacy in a mouse model of preclinical systemic sclerosis

    No full text
    Abstract Background Uncontrolled T-cell activation plays a key role in systemic sclerosis (SSc). Arsenic trioxide (ATO) has immunological effects and has demonstrated potential in preclinical SSc models. In this study, we assessed the efficacy of ATO in Fra2 transgenic (Fra2TG) mice, which develop severe vascular remodeling of pulmonary arterioles and nonspecific interstitial pneumonia-like lung disease, closely resembling human SSc-associated pulmonary hypertension, therefore partially resembling to the SSc human disease. Methods The efficacy of ATO in Fra2TG mice was evaluated through histological scoring and determination of cell infiltration. Fibrotic changes in the lungs were assessed by measuring collagen content biochemically, using second harmonic generation to measure fibrillar collagen, and imaging via computed tomography. Cardiovascular effects were determined by measuring right ventricular systolic pressure and vessel remodeling. The mechanism of action of ATO was then investigated by analyzing lung cell infiltrates using flow cytometry and bulk RNA with sequencing techniques. Results After ATO treatment, the Ashcroft histological score was substantially decreased by 33% in ATO-treated mice compared to control mice. Other investigations of fibrotic markers showed a trend of reduction in various measurements of fibrosis, but the differences did not reach significance. Further cardiovascular investigations revealed convergent findings supporting a beneficial effect of ATO, with reduced right ventricular systolic pressure and medial wall thickness, and a significant decrease in the number of muscularized distal pulmonary arteries in ATO-treated Fra2TG mice compared to untreated Fra2TG mice. Additionally, inflammatory cell infiltration was also markedly reduced in lesioned lungs. A reduction in the frequency of CD4 + and T effector memory cells, and an increase in the percentage of CD4 + T naive cells in the lungs of ATO-treated Fra-2TG mice, was observed when compared to PBS group Fra-2Tg mice. RNA-seq analysis of ATO-treated mouse lungs revealed a downregulation of biological pathways associated with immune activity and inflammation, such as T-cell activation, regulation of leucocyte activation, leucocyte cell–cell adhesion, and regulation of lymphocyte activation. Conclusions Our results suggest the clinical relevance of ATO treatment in SSc. Using the Fra2TG mouse model, we observed significant lung histological changes, a trend towards a decrease in various fibrotic makers, and a strong reduction in vascular remodeling. The mechanism of action of ATO appears to involve a marked counteraction of the immune activation characteristic of SSc, particularly T-cell involvement. These findings pave the way for further studies in SSc

    Lineage Tracing Reveals the Dynamic Contribution of Pericytes to the Blood Vessel Remodeling in Pulmonary Hypertension

    No full text
    International audienceOBJECTIVE:Excessive accumulation of resident cells within the pulmonary vascular wall represents the hallmark feature of the remodeling occurring in pulmonary arterial hypertension (PAH). Furthermore, we have previously demonstrated that pulmonary arterioles are excessively covered by pericytes in PAH, but this process is not fully understood. The aim of our study was to investigate the dynamic contribution of pericytes in PAH vascular remodeling. Approach and Results: In this study, we performed in situ, in vivo, and in vitro experiments. We isolated primary cultures of human pericytes from controls and PAH lung specimens then performed functional studies (cell migration, proliferation, and differentiation). In addition, to follow up pericyte number and fate, a genetic fate-mapping approach was used with an NG2CreER;mT/mG transgenic mice in a model of pulmonary arteriole muscularization occurring during chronic hypoxia. We identified phenotypic and functional abnormalities of PAH pericytes in vitro, as they overexpress CXCR (C-X-C motif chemokine receptor)-7 and TGF (transforming growth factor)-βRII and, thereby, display a higher capacity to migrate, proliferate, and differentiate into smooth muscle-like cells than controls. In an in vivo model of chronic hypoxia, we found an early increase in pericyte number in a CXCL (C-X-C motif chemokine)-12-dependent manner whereas later, from day 7, activation of the canonical TGF-β signaling pathway induces pericytes to differentiate into smooth muscle-like cells.CONCLUSIONS:Our findings reveal a pivotal role of pulmonary pericytes in PAH and identify CXCR-7 and TGF-βRII as 2 intrinsic abnormalities in these resident progenitor vascular cells that foster the onset and maintenance of PAH structural changes in blood lung vessels

    Preventing the Increase in Lysophosphatidic Acids: A New Therapeutic Target in Pulmonary Hypertension?

    No full text
    Cardiovascular diseases (CVD) are the leading cause of premature death and disability in humans that are closely related to lipid metabolism and signaling. This study aimed to assess whether circulating lysophospholipids (LPL), lysophosphatidic acids (LPA) and monoacylglycerols (MAG) may be considered as potential therapeutic targets in CVD. For this objective, plasma levels of 22 compounds (13 LPL, 6 LPA and 3 MAG) were monitored by liquid chromatography coupled with tandem mass spectrometry (HPLC/MS2) in different rat models of CVD, i.e., angiotensin-II-induced hypertension (HTN), ischemic chronic heart failure (CHF) and sugen/hypoxia(SuHx)-induced pulmonary hypertension (PH). On one hand, there were modest changes on the monitored compounds in HTN (LPA 16:0, 18:1 and 20:4, LPC 16:1) and CHF (LPA 16:0, LPC 18:1 and LPE 16:0 and 18:0) models compared to control rats but these changes were no longer significant after multiple testing corrections. On the other hand, PH was associated with important changes in plasma LPA with a significant increase in LPA 16:0, 18:1, 18:2, 20:4 and 22:6 species. A deleterious impact of LPA was confirmed on cultured human pulmonary smooth muscle cells (PA-SMCs) with an increase in their proliferation. Finally, plasma level of LPA(16:0) was positively associated with the increase in pulmonary artery systolic pressure in patients with cardiac dysfunction. This study demonstrates that circulating LPA may contribute to the pathophysiology of PH. Additional experiments are needed to assess whether the modulation of LPA signaling in PH may be of interest

    Proinflammatory Signature of the Dysfunctional Endothelium in Pulmonary Hypertension. Role of the Macrophage Migration Inhibitory Factor/CD74 Complex

    No full text
    Comment inSpotlight on Inflammation in Pulmonary Hypertension. [Am J Respir Crit Care Med. 2015]International audienceRATIONALE:Inflammation and endothelial dysfunction are considered two primary instigators of pulmonary arterial hypertension (PAH). CD74 is a receptor for the proinflammatory cytokine macrophage migration inhibitory factor (MIF). This ligand/receptor complex initiates survival pathways and cell proliferation, and it triggers the synthesis and secretion of major proinflammatory factors and cell adhesion molecules.OBJECTIVES:We hypothesized that the MIF/CD74 signaling pathway is overexpressed in idiopathic PAH (iPAH) and contributes to a proinflammatory endothelial cell (EC) phenotype.METHODS:Primary early passage cultures of human ECs isolated from lung tissues obtained from patients with iPAH and controls were examined for their ability to secrete proinflammatory mediators and bind inflammatory cells with or without modulation of the functional activities of the MIF/CD74 complex. In addition, we tested the efficacies of curative treatments with either the MIF antagonist ISO-1 or anti-CD74 neutralizing antibodies on the aberrant proinflammatory EC phenotype in vitro and in vivo and on the progression of monocrotaline-induced pulmonary hypertension.MEASUREMENTS AND MAIN RESULTS:In human lung tissues, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin expressions are markedly up-regulated in the endothelium of distal iPAH pulmonary arteries. Circulating MIF levels are increased in the serum of patients with PAH compared with control subjects, and T-cell lymphocytes represent a source of this overabundance. In addition, CD74 is highly expressed in the endothelium of muscularized pulmonary arterioles and in cultured pulmonary ECs from iPAH, contributing to an exaggerated recruitment of peripheral blood mononuclear cells to pulmonary iPAH ECs. Finally, we found that curative treatments with the MIF antagonist ISO-1 or anti-CD74 neutralizing antibodies partially reversed development of pulmonary hypertension in rats and substantially reduced inflammatory cell infiltration.CONCLUSIONS:We report here that CD74 and MIF are markedly increased and activated in patients with iPAH, contributing to the abnormal proinflammatory phenotype of pulmonary ECs in iPAH
    corecore