41 research outputs found

    Development of Analytical Models of T- and U-shaped Cantilever-based MEMS Devices for Sensing and Energy Harvesting Applications

    Get PDF
    Dynamic-mode cantilever-based structures supporting end masses are frequently used as MEMS/NEMS devices in application areas as diverse as chemical/biosensing, atomic force microscopy, and energy harvesting. This paper presents a new analytical solution for the free vibration of a cantilever with a rigid end mass of finite size. The effects of both translational and rotational inertia as well as horizontal eccentricity of the end mass are incorporated into the model. This model is general regarding the end-mass distribution/geometry and is validated here for the commonly encountered geometries of T- and U-shaped cantilevers. Comparisons with 3D FEA simulations and experiments on silicon and organic MEMS are quite encouraging. The new solution gives insight into device behavior, provides an efficient tool for preliminary design, and may be extended in a straightforward manner to account for inherent energy dissipation in the case of organic-based cantilevers

    Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer

    Get PDF
    Plasmon-enhanced optical trapping is being actively studied to provide efficient manipulation of nanometre-sized objects. However, a long-standing issue with previously proposed solutions is how to controllably load the trap on-demand without relying on Brownian diffusion. Here, we show that the photo-induced heating of a nanoantenna in conjunction with an applied a.c. electric field can initiate rapid microscale fluid motion and particle transport with a velocity exceeding 10 μm s -1 , which is over two orders of magnitude faster than previously predicted. Our electrothermoplasmonic device enables on-demand long-range and rapid delivery of single nano-objects to specific plasmonic nanoantennas, where they can be trapped and even locked in place. We also present a physical model that elucidates the role of both heat-induced fluidic motion and plasmonic field enhancement in the plasmon-assisted optical trapping process. Finally, by applying a d.c. field or low-frequency a.c. field (below 10 Hz) while the particle is held in the trap by the gradient force, the trapped nano-objects can be immobilized into plasmonic hotspots, thereby providing the potential for effective low-power nanomanufacturing on-chip

    Intelligence, reason of state and the art of governing risk and opportunity in early modern Europe

    Get PDF
    Drawing upon primary and secondary historical material, this paper explores the role of intelligence in early modern government. It focuses upon developments in seventeenth- and early-eighteenth-century England, a site-specific genealogical moment in the broader history of state power/knowledges. Addressing a tendency in Foucauldian work to neglect pre-eighteenth-century governance, the analysis reveals a set of interrelated processes which gave rise to an innovative technique for anticipating hazard and opportunity for the state. At the intersection of raison d’État, the evolving art of government, widespread routines of secrecy and a post-Westphalia field of European competition and exchange, intelligence was imagined as a fundamental solution to the concurrent problems of ensuring peace and stability while improving state forces. In the administrative offices of the English Secretary of State, an assemblage of complex and interrelated procedures sought to produce and manipulate information in ways which exposed both possible risks to the state and potential opportunities for expansion and gain. As this suggests, the art of intelligence played an important if largely unacknowledged role in the formation and growth of the early modern state. Ensuring strategic advantage over rivals, intelligence also limited the ability of England's neighbours to dominate trade, control the seas and master the colonies, functioning as a constitutive feature of European balance and equilibrium. As the analysis concludes, understanding intelligence as a form of governmental technique – a way of doing something – reveals an entirely novel way of thinking about and investigating its myriad (historical and contemporary) formations

    Growth and Characterization of ZnMgS and ZnMgS/ZnSe Quantum Wells grown on GaAs (100) by Using MBE

    No full text
    Structures containing Zn1 x MgxS have been grown lattice matched to GaAs by using molecular beam epitaxy (MBE) with ZnS as the source of S. The composition of the alloy produced has been determined using double-crystal X-ray spectroscopy and X-ray interference measurements. Both techniques indicate that 0.88 x 0.93. This result is conrmed by both secondary ion mass spectroscopy and an Auger analysis carried out on the material. These results show that the crystalline quality of the material produced is excellent and that it has been grown coherently to the GaAs substrate. Photoluminescence spectroscopy shows a high intensity emission with a narrow full width half maximum, conrming the suitability of this alloy as a high-bandgap barrier material

    Rapid prototyping of chemical microsensors based on molecularly imprinted polymers synthesized by two-photon stereolithography.

    No full text
    International audienceTwo-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor
    corecore