131 research outputs found
Far-infrared observations of Sagittarius B2: Reconsideration of source structure
New moderate-angular-resolution far-infrared observations of the Sagittarius B2 star-forming region are presented, discussed, and compared with recent radio molecular and continuum observations of this source. In contrast to previous analyses, its far-infrared spectrum is interpreted as the result of a massive frigid cloud overlying a more-or-less normal infrared source, a natural explanation for the object's previously-noted pecularities. The characteristics derived for the obscuring cloud are similar to those found for the W51 MAIN object. Both sources have high sub-millimeter surface brightness, a high ratio of sub-millimeter to far-infrared flux, and numerous regions of molecular maser emission
The (32)S/(33)S abundance as a function of galactocentric radius in the Milky Way
Astration of heavy elements by the stars of the Milky Way forms a fossil record which may preserve spacial distribution of the mass function for the stars in the galaxy. Sulfur is among the last common element for which the relative abundance of its various isotopes have yet to be completely measured within our galaxy. Explosive oxygen burning in massive stars is thought to be the process which dominates sulfur production within stars. There models predict that the various isotopes (S-32, S-33, S-34) are formed in relative abundance which depend strongly upon the mass of the parent star. This relative abundance is thought to be unaffected by subsequent stellar procesing since all important sinks of sulfur destroy it without regard for isotopic form. Hence the spacial variation of the mass function (MF) can be studied by measuring the abundance variation of sulfur isotopes in the galaxy provided that the product yields for these isotopes are known accurately as a function of stellar mass
Some effects of dust on photometry of high-z galaxies: Confounding the effects of evolution
Photometric observations of very distant galaxies--e.g., color vs. z or magnitude vs. z, have been used over the past decade or so in investigations into the evolution of the stellar component. Numerous studies have predicted significant color variations as a result of evolution, in addition to the shifting of different rest wavelengths into the band of observation. Although there is significant scatter, the data can be fit with relatively straightforward, plausible models for galaxian evolution. In very few cases are the effects of dust extinction included in the models. This is due in a large part to the uncertainty about the distribution and optical properties of the grains, and even whether or not they are present in significant numbers in some types of galaxies such as ellipticals. It is likely that the effects of dust on broadband observations are the greatest uncertainty in studies of very distant galaxies. We use a detailed Monte Carlo radiative transfer model within a spherical geometry for different star/dust distributions to examine the effects of dust on the broadband colors of galaxies as a function of redshift. The model fully accounts for absorption and angular redistribution in scattering. In this summary, we consider only the effects on color vs. redshift for three simple geometries each with the same total dust optical depth. Elsewhere at this conference, Capuano, Thronson, & Witt consider other effects of altering the relative dust/star distribution
Models of polarized infrared emission from bipolar nebulae
Many stars with circumstellar dust shells show a high degree of linear polarization (Sato et al. 1985). We are developing a model which assumes that the polarization arises from scattering by circumstellar dust. Our model assumes a geometry in which the star is surrounded by an optically thin spherical dust shell and embedded within an optically thick disk. This geometry is consistent with that proposed for objects with bipolar molecular outflow. This is important because many bipolar flow objects have also been observed to be highly polarized. The high degree of linear polarization is produced because the disk differentially attenuates the light from the star. The light incident from the point source is attenuated by a factor of exp(-tau/cos theta) where theta is the angle between a ray from the point source to the scatterer and a ray normal to the disk; tau is the optical depth at the wavelength of interest. Hence, the light scattered from the regions directly above and below the disk give the largest contribution to the total flux. The scattering angle for light from these regions is near 90 deg., so the light is strongly polarized and, in the Rayleigh scattering regime, is polarized parallel to the disk. The Stokes parameters for the scattered light from each particle in the shell are calculated by using the scattering matrix elements generated by a Mie scattering program. After the Stokes parameters for each particle are computed they are summed to give the Stokes parameters for the entire shell. Two graphs are presented which show the intensity and polarization spectrum generated by our model using the optical constants for astronomical silicates as defined by Draine and Lee (1984)
Star-dust geometries in galaxies: The effect of interstellar matter distributions on optical and infrared properties of late-type galaxies
The presence of substantial amounts of interstellar dust in late-type galaxies affects observable parameters such as the optical surface brightness, the color, and the ratio of far-infrared to optical luminosity of these galaxies. We conducted radiative transfer calculations for late-type galaxy environments to examine two different scenarios: (1) the effects of increasing amounts of dust in two fixed geometries with different star distributions; and (2) the effects of an evolving dust-star geometry in which the total amount of dust is held constant, for three different star distributions. The calculations were done for ten photometric bands, ranging from the far-ultraviolet to the near-infrared (K), and scattered light was included in the galactic surface brightness at each wavelength. The energy absorbed throughout these ten photometric bands was assumed to re-emerge in the far-infrared as thermal dust emission. We also considered the evolutionary contraction of a constant amount of dust relative to pre-existing star distributions
Mass return to the interstellar medium from highly-evolved carbon stars
Data produced by the Infrared Astronomy Satellite (IRAS) was surveyed at the mid- and far-infrared wavelengths. Visually-identified carbon stars in the 12/25/60 micron color-color diagram were plotted, along with the location of a number of mass-losing stars that lie near the location of the carbon stars, but are not carbon rich. The final sample consisted of 619 objects, which were estimated to be contaminated by 7 % noncarbon-rich objects. The mass return rate was estimated for all evolved circumstellar envelopes. The IRAS Point Source Catalog (PSC) was also searched for the entire class of stars with excess emission. Mass-loss rates, lifetimes, and birthrates for evolved stars were also estimated
Airborne Astronomy Symposium. A symposium commemorating the tenth anniversary of operations of the Kuiper Airborne Observatory
Airborne infrared astronomy is discussed with respect to observations of the solar system, stars, star formation, and the interstellar medium. Far infrared characteristics of the Milky Way, its center, and other galaxies are considered. The instrumentation associated with IR astronomy is addressed
The nature of AFGL 2591 and its associated molecular outflow: Infrared and millimeter-wave observations
The results of infrared photometry from 2 to 160 microns of AFGL and CO(12) observations of its associated molecular cloud and high velocity molecular outflow are presented and discussed. The observed solar luminosity is 6.7 x 10(4) at a distance of 2 kpc. The spectrum of AFGL 2591 is interpreted in the context of a model in which a single embedded object is the dominant source of the infrared luminosity. This object is determined to be surrounded by a compact, optically thick dust shell with a temperature in excess of several hundred degrees kelvin. The extinction to this source is estimated to be between 26 and 50 visual magnitudes. The absolute position of the infrared sources at 10 microns was determined to an accuracy of + or in. This indicates for the first time that the IR source and H2O source are not coincident. The CO(12) observations show the high-velocity molecular flow near AFGL 2591 to be extended, bipolar and roughly centered on the infrared emission. The observations suggest that the red-shifted flow component extends beyond the boundary of the ambient cloud within which AFGL 2591 is embedded. The CO(12) observations also show that AFGL 2591 is embedded in a molecular cloud with an LSR velocity of -5 km/s
IRAS observations of giant molecular clouds in the Milky Way
The IRAS data base has been used to study infrared radiation from molecular clouds in our galaxy. The sample of clouds was restricted to those with reliably determined molecular masses from large area, multi-isotope CO maps. They were normalized to X(CO-13)= 2x10 to the -6. Flux densities at 60 microns and 100 microns were determined by integrating the flux density within rectangles drawn on the sky flux plates after subtracting a suitable background. The rectangles were chosen to be coextensive with the areas mapped in CO. Color corrections were made and luminosites calculated by assuming the optical depths were proportional to frequency. The flux densities were converted to dust masses with a value for 4a rho/3Q = .04 g/cm at 100 microns
- …