2 research outputs found

    Characterising Livestock System Zoonoses Hotspots

    Get PDF
    A systematic review of the published literature was undertaken, to explore the ability of different types of model to help identify the relative importance of different drivers leading to the development of zoonoses hotspots. We estimated that out of 373 papers we included in our review, 108 papers touched upon the objective of 'Assessment of interventions and intervention policies', 75 addressed the objective of 'Analysis of economic aspects of disease outbreaks and interventions', 67 the objective of 'Prediction of future outbreaks', but only 37 broadly addressed the objective of 'Sensitivity analysis to identify criteria leading to enhanced risk'. Most models of zoonotic diseases are currently capturing outbreaks over relatively short time and largely ignoring socio-economic drivers leading to pathogen emergence, spill-over and spread. In order to study long-term changes we need to understand how socio-economic and climatic changes affect structure of livestock production and how these in turn affect disease emergence and spread. Models capable of describing this processes do not appear to exist, although some progress has been made in linking social and economical aspects of livestock production and in linking economics to disease dynamics. Henceforth we conclude that a new modelling framework is required that expands and formalises the 'one world, one health' strategy, enabling its deployment in the re-thinking of prevention and control strategies. Although modelling can only provide means to identify risks associated with socio-economic changes, it can never be a substitute for data collection. Finally, we note that uncertainty analysis and uncertainty communication form a key element of modelling process and yet are rarely addressed

    Determining the success of carbon capture and storage projects

    No full text
    Numerous Carbon Capture and Storage (CCS) projects have been initiated across the globe. Using data on planned, cancelled, and operational CCS projects, this paper aims to elicit characteristics that render CCS projects likely to become operational. These results suggest that a focus on storage site selection and beneficial uses of carbon dioxide would encourage CCS development
    corecore