62 research outputs found

    Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections

    Get PDF
    We performed second harmonic generation (SHG) imaging of collagen in rat-tendon cryosections, using femtosecond laser scanning confocal microscopy, both in backscattering and transmission geometries. SHG transmission images of collagen fibers were spatially resolved due to a coherent, directional SHG component. This effect was enhanced with the use of an index-matching fluid (n(l) 1.52). The average SHG intensity oscillated with wavelength in the backscattered geometry (isotropic SHG component), whereas the spectral profile was consistent with quasi-phase-matching conditions in transmission geometry (forward propagating, coherent SHG component) around 440 nm (lambda(p) 880 nm). Collagen type I from bovine Achilles tendon was imaged for SHG in the backscattered geometry and its first-order effective nonlinear coefficient was determined (vertical bar d(eff)vertical bar approximate to 0.085(+/- 0.025) x 10-(12)mV(-1)) by comparison to samples of inorganic materials with known effective nonlinear coefficients (LiNbO3 and LiIO3). The SHG spectral response of collagen type I from bovine Achilles tendon matched that of the rat-tendon cryosections in backscattered geometry. Collagen types I, II, and VI powders (nonfibrous) did not show any detectable SHG, indicating a lack of noncentrosymmetric crystalline structure at the molecular level. The various stages of collagen thermal denaturation were investigated in rat-tendon cryosections using SHG and bright-field imaging. Thermal denaturation resulted in the gradual destruction of the SHG signal

    Wnts control membrane potential in mammalian cancer cells

    Get PDF
    The Wnt signalling network determines gene transcription with free intracellular Ca2+ (urn:x-wiley:00223751:media:tjp13863:tjp13863-math-0001) and β‐catenin as major intracellular signal transducers. Despite its critical importance during development and disease, many of the basic mechanisms of Wnt signal activation remain unclear. Here we show by single cell recording and simultaneous urn:x-wiley:00223751:media:tjp13863:tjp13863-math-0002 imaging in mammalian prostate cancer cells that an early step in the signal cascade is direct action on the cell membrane potential. We show that Wnt ligands 5A, 9B and 10B rapidly hyperpolarized the cells by activating K+ current by Ca2+ release from intracellular stores. Medium‐throughput multi‐well recordings showed responses to Wnts at concentrations of 2 nm. We identify a putative target for early events as a TRPM channel. Wnts thus act as ligands for ion channel activation in mammalian cells and membrane potential is an early indicator of control of transcription

    Cx43 regulates mechanotransduction mechanisms in human preterm amniotic membrane defects.

    Get PDF
    OBJECTIVE: The effects of mechanical stimulation in preterm amniotic membrane (AM) defects were explored. METHODS: Preterm AM was collected from women undergoing planned preterm caesarean section (CS) due to fetal growth restriction or emergency CS after spontaneous preterm prelabour rupture of the membranes (sPPROM). AM explants near the cervix or placenta were subjected to trauma and/or mechanical stimulation with the Cx43 antisense. Markers for nuclear morphology (DAPI), myofibroblasts (αSMA), migration (Cx43), inflammation (PGE2 ) and repair (collagen, elastin and transforming growth factor β [TGFβ1 ]) were examined by confocal microscopy, second harmonic generation, qPCR and biochemical assays. RESULTS: In preterm AM defects, myofibroblast nuclei were highly deformed and contractile and expressed αSMA and Cx43. Mechanical stimulation increased collagen fibre polarisation and the effects on matrix markers were dependent on tissue region, disease state, gestational age and the number of fetuses. PGE2 levels were broadly similar but reduced after co-treatment with Cx43 antisense in late sPPROM AM defects. TGFβ1 and Cx43 gene expression were significantly increased after trauma and mechanical stimulation but this response dependent on gestational age. CONCLUSION: Mechanical stimulation affects Cx43 signalling and cell/collagen mechanics in preterm AM defects. Establishing how Cx43 regulates mechanosignalling could be an approach to repair tissue integrity after trauma

    Cx43 regulates mechanotransduction mechanisms in human preterm amniotic membrane defects

    Get PDF
    Objective: The effects of mechanical stimulation in preterm amniotic membrane (AM) defects were explored. Methods: Preterm AM was collected from women undergoing planned preterm caesarean section (CS) due to fetal growth restriction or emergency CS after spontaneous preterm prelabour rupture of the membranes (sPPROM). AM explants near the cervix or placenta were subjected to trauma and/or mechanical stimulation with the Cx43 antisense. Markers for nuclear morphology (DAPI), myofibroblasts (αSMA), migration (Cx43), inflammation (PGE2) and repair (collagen, elastin and transforming growth factor β [TGFβ1]) were examined by confocal microscopy, second harmonic generation, qPCR and biochemical assays. Results: In preterm AM defects, myofibroblast nuclei were highly deformed and contractile and expressed αSMA and Cx43. Mechanical stimulation increased collagen fibre polarisation and the effects on matrix markers were dependent on tissue region, disease state, gestational age and the number of fetuses. PGE2 levels were broadly similar but reduced after co-treatment with Cx43 antisense in late sPPROM AM defects. TGFβ1 and Cx43 gene expression were significantly increased after trauma and mechanical stimulation but this response dependent on gestational age. Conclusion: Mechanical stimulation affects Cx43 signalling and cell/collagen mechanics in preterm AM defects. Establishing how Cx43 regulates mechanosignalling could be an approach to repair tissue integrity after trauma

    Connexins in wound healing; perspectives in diabetic patients.

    Get PDF
    Skin lesions are common events and we have evolved to rapidly heal them in order to maintain homeostasis and prevent infection and sepsis. Most acute wounds heal without issue, but as we get older our bodies become compromised by poor blood circulation and conditions such as diabetes, leading to slower healing. This can result in stalled or hard-to-heal chronic wounds. Currently about 2% of the Western population develop a chronic wound and this figure will rise as the population ages and diabetes becomes more prevalent [1]. Patient morbidity and quality of life are profoundly altered by chronic wounds [2]. Unfortunately a significant proportion of these chronic wounds fail to respond to conventional treatment and can result in amputation of the lower limb. Life quality and expectancy following amputation is severely reduced. These hard to heal wounds also represent a growing economic burden on Western society with published estimates of costs to healthcare services in the region of $25B annually [3]. There exists a growing need for specific and effective therapeutic agents to improve healing in these wounds. In recent years the gap junction protein Cx43 has been shown to play a pivotal role early on in the acute wound healing process at a number of different levels [4-7]. Conversely, abnormal expression of Cx43 in wound edge keratinocytes was shown to underlie the poor rate of healing in diabetic rats, and targeting its expression with an antisense gel restored normal healing rates [8]. The presence of Cx43 in the wound edge keratinocytes of human chronic wounds has also been reported [9]. Abnormal Cx43 biology may underlie the poor healing of human chronic wounds and be amenable therapeutic intervention [7]. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics

    Identification of Therapeutic Targets of Inflammatory Monocyte Recruitment to Modulate the Allogeneic Injury to Donor Cornea

    Get PDF
    Purpose: We sought to test the hypothesis that monocytes contribute to the immunopathogenesis of corneal allograft rejection and identify therapeutic targets to inhibit monocyte recruitment. Methods: Monocytes and proinflammatory mediators within anterior chamber samples during corneal graft rejection were quantified by flow cytometry and multiplex protein assays. Lipopolysaccharide or IFN-γ stimulation of monocyte-derived macrophages (MDMs) was used to generate inflammatory conditioned media (CoM). Corneal endothelial viability was tested by nuclear counting, connexin 43, and propidium iodide staining. Chemokine and chemokine receptor expression in monocytes and MDMs was assessed in microarray transcriptomic data. The role of chemokine pathways in monocyte migration across microvascular endothelium was tested in vitro by chemokine depletion or chemokine receptor inhibitors. Results: Inflammatory monocytes were significantly enriched in anterior chamber samples within 1 week of the onset of symptoms of corneal graft rejection. The MDM inflammatory CoM was cytopathic to transformed human corneal endothelia. This effect was also evident in endothelium of excised human cornea and increased in the presence of monocytes. Gene expression microarrays identified monocyte chemokine receptors and cognate chemokines in MDM inflammatory responses, which were also enriched in anterior chamber samples. Depletion of selected chemokines in MDM inflammatory CoM had no effect on monocyte transmigration across an endothelial blood–eye barrier, but selective chemokine receptor inhibition reduced monocyte recruitment significantly. Conclusions: We propose a role for inflammatory monocytes in endothelial cytotoxicity in corneal graft rejection. Therefore, targeting monocyte recruitment offers a putative novel strategy to reduce donor endothelial cell injury in survival of human corneal allografts

    Connexin 43 is overexpressed in human fetal membrane defects after fetoscopic surgery

    Get PDF
    This project was funded by the RoseTrees Trust (M400, TTC), the QMUL Life Sciences Initiative, Institutional Strategic Support Fund from the Wellcome Trust (105626/Z/14/Z, TTC) and supported by researchers at the National Institute for Health Research, University College London Hospitals Biomedical Research Centre (ALD)

    Copolymer Composition and Nanoparticle Configuration Enhance in vitro Drug Release Behavior of Poorly Water-soluble Progesterone for Oral Formulations

    Get PDF
    HYPOTHESIS: Developing oral formulations to enable effective release of poorly water-soluble drugs like progesterone is a major challenge in pharmaceutics. Coaxial electrospray can generate drug-loaded nanoparticles of strategic compositions and configurations to enhance physiological dissolution and bioavailability of poorly water-soluble drug progesterone. EXPERIMENTS: ix formulations comprising nanoparticles encapsulating progesterone in different poly(lactide-co-glycolide) (PLGA) matrix configurations and compositions were fabricated and characterized in terms of morphology, molecular crystallinity, drug encapsulation efficiency and release behavior. FINDINGS: A protocol of fabrication conditions to achieve 100% drug encapsulation efficiency in nanoparticles was developed. Scanning electron microscopy shows smooth and spherical morphology of 472.1± 54.8 to 588.0± 92.1 nm in diameter. Multiphoton Airyscan super-resolution confocal microscopy revealed core-shell nanoparticle configuration. Fourier transform infrared spectroscopy confirmed presence of PLGA and progesterone in all formulations. Diffractometry indicated amorphous state of the encapsulated drug. UV-vis spectroscopy showed drug release increased with hydrophilic copolymer glycolide ratio while core-shell formulations with progesterone co-dissolved in PLGA core exhibited enhanced release over five hours at 79.9± 1.4% and 70.7± 3.5% for LA:GA 50:50 and 75:25 in comparison with pure progesterone without polymer matrix in the core at 67.0± 1.7% and 57.5± 2.8%, respectively. Computational modeling showed good agreement with the experimental drug release behavior in vitro

    Posterior Vitreous Detachment and the Posterior Hyaloid Membrane

    Get PDF
    PURPOSE: Despite posterior vitreous detachment being a common ocular event affecting most individuals in an aging population, there is little consensus regarding its precise anatomic definition. We investigated the morphologic appearance and molecular composition of the posterior hyaloid membrane to determine whether the structure clinically observed enveloping the posterior vitreous surface after posterior vitreous detachment is a true basement membrane and to postulate its origin. Understanding the relationship between the vitreous (in both its attached and detached state) and the internal limiting membrane of the retina is essential to understanding the cause of rhegmatogenous retinal detachment and vitreoretinal interface disorders, as well as potential future prophylactic and treatment strategies. DESIGN: Clinicohistologic correlation study. PARTICIPANTS: Thirty-six human donor globes. METHODS: Vitreous bodies identified to have posterior vitreous detachment were examined with phase-contrast microscopy and confocal microscopy after immunohistochemically staining for collagen IV basement membrane markers, in addition to extracellular proteins that characterize the vitreoretinal junction (fibronectin, laminin) and vitreous gel (opticin) markers. The posterior retina similarly was stained to evaluate the internal limiting membrane. Findings were correlated to the clinical appearance of the posterior hyaloid membrane observed during slit-lamp biomicroscopy after posterior vitreous detachment and compared with previously published studies. MAIN OUTCOME MEASURES: Morphologic appearance and molecular composition of the posterior hyaloid membrane. RESULTS: Phase-contrast microscopy consistently identified a creased and distinct glassy membranous sheet enveloping the posterior vitreous surface, correlating closely with the posterior hyaloid membrane observed during slit-lamp biomicroscopy in patients with posterior vitreous detachment. Immunofluorescent confocal micrographs demonstrated the enveloping membranous structure identified on phase-contrast microscopy to show positive stain results for type IV collagen. Immunofluorescence of the residual intact internal limiting membrane on the retinal surface also showed positive stain results for type IV collagen. CONCLUSIONS: The results of this study provide immunohistochemical evidence that the posterior hyaloid membrane is a true basement membrane enveloping the posterior hyaloid surface. Because this membranous structure is observed only after posterior vitreous detachment, the results of this study indicate that it forms part of the internal limiting membrane when the vitreous is in its attached state
    corecore