327 research outputs found

    Non-linear dynamic of rotor-stator system with non-linear bearing clearance

    Full text link
    The study deals with a rotor-stator contact inducing vibration in rotating machinery. A numerical rotor-stator system, including a non-linear bearing with Hertz contact and clearance is considered. To determine the non-linear responses of this system, non-linear dynamic equations can be integrated numerically. However, this procedure is both time consuming and costly to perform. The aim of this Note is to apply the Alternate Frequency/Time Method and the 'path following continuation' in order to obtain the non-linear responses to this problem. Then the orbits of rotor and stator responses at various speeds are investigated

    On a new harmonic selection technique for harmonic balance method

    Get PDF
    International audienceThis paper is intended to present a new harmonic selection technique when solving nonlinear dynamic systems with the harmonic balance method. This technique belongs to the class of method called the adaptive harmonic balance method (AHBM). The harmonic selection is based on the use of a tangent predictor and relies on a stepwise regression procedure that allows for a dynamic management of the number of selected harmonics via an addition or removal procedure. The efficiency of this method relative to the classical harmonic balance method (HBM) is then evaluated through examples; this later step will indicate that AHBM can significantly reduce the number of variables, thus leading to computational time savings without deteriorating solution quality

    On the Use of the Proper Generalised Decomposition for Solving Nonlinear Vibration Problems

    Get PDF
    International audienceThis paper presents the use of the so called Proper Generalized Decomposition method (PGD) for solving nonlinear vibration problems. PGD is often presented as an a priori reduction technique meaning that the reduction basis for expressing the solution is computed during the computation of the solution itself. In this paper, the PGD is applied in addition with the Harmonic Balance Method in order to find periodic solutions of nonlinear dynamic systems. Several algorithms are presented in order to compute nonlinear normal modes and forced solutions. Application is carried out on systems containing geometrical nonlinearity and/or friction damping. We show that the PGD is able to compute a good approximation of the solutions event with a projection basis of small size. Results are compared with a Proper Orthogonal Decomposition method showing that the PGD can sometimes provide an optimal reduction basis relative to the number of basis components

    Harmonic Balance-Based Approach for Quasi-Periodic Motions and Stability Analysis

    Get PDF
    Quasi-periodic motions and their stability are addressed from the point of view of different harmonic balance-based approaches. Two numerical methods are used: a generalized multidimensional version of harmonic balance and a modification of a classical solution by harmonic balance. The application to the case of a nonlinear response of a Duffing oscillator under a bi-periodic excitation has allowed a comparison of computational costs and stability evaluation results. The solutions issued from both methods are close to one another and time marching tests showing a good agreement with the harmonic balance results confirm these nonlinear responses. Besides the overall adequacy verification, the observation comparisons would underline the fact that while the 2D approach features better performance in resolution cost, the stability computation turns out to be of more interest to be conducted by the modified 1D approach

    Computing multiple periodic solutions of nonlinear vibration problems using the harmonic balance method and Groebner bases

    Get PDF
    International audienceThis paper is devoted to the study of vibration of mechanical systems with geometric nonlinearities. The harmonic balance method is used to derive systems of polynomial equations whose solutions give the frequency component of the possible steady states. Groebner basis methods are used for computing all solutions of polynomial systems. This approach allows to reduce the complete system to an unique polynomial equation in one variable driving all solutions of the problem. In addition, in order to decrease the number of variables, we propose to first work on the undamped system, and recover solution of the damped system using a continuation on the damping parameter. The search for multiple solutions is illustrated on a simple system, where the influence of the retained number of harmonic is studied. Finally, the procedure is applied on a simple cyclic system and we give a representation of the multiple states versus frequency

    Harmonic Balance-Based Approach for Quasi-Periodic Motions and Stability Analysis

    Get PDF
    Quasi-periodic motions and their stability are addressed from the point of view of different harmonic balance-based approaches. Two numerical methods are used: a generalized multidimensional version of harmonic balance and a modification of a classical solution by harmonic balance. The application to the case of a nonlinear response of a Duffing oscillator under a bi-periodic excitation has allowed a comparison of computational costs and stability evaluation results. The solutions issued from both methods are close to one another and time marching tests showing a good agreement with the harmonic balance results confirm these nonlinear responses. Besides the overall adequacy verification, the observation comparisons would underline the fact that while the 2D approach features better performance in resolution cost, the stability computation turns out to be of more interest to be conducted by the modified 1D approach

    Nonlinear Harmonic Analysis of a Blade Model Subjected to Large Geometrical Deflection and Internal Resonance

    Get PDF
    International audienceThis paper is devoted to the study of the nonlinear harmonic response of an industrial blade model subjected to large geometrical deflection. A reduction procedure is performed on the blade model using the linear normal modes of the structure. Geometrical nonlinear effects are taken into account by considering cubic and quadratic stiffnesses in the dynamical reduced model. Reduced nonlinear stiffness coefficients are computed with the STiffness Evaluation Procedure (STEP) and periodic solutions are sought using the Harmonic Balance Method (HBM) coupled to a pseudo-arclength continuation. Along with the harmonic response, a bifurcation analysis is performed to compute both turning and branching points. Specific attention is paid to the internal resonance phenomenon. 2 to 1 internal resonance occurred during the frequency response analysis close to the first and second modes of the reduced model. Mode coupling phenomena occurred during the harmonic analysis and secondary branches of solutions were obtained from branching point bifurcations

    Travelling and standing envelope solitons in discrete non-linear cyclic structures

    No full text
    International audienceEnvelope solitons are demonstrated to exist in non-linear discrete structures with cyclic symmetry. The analysis is based on the Non-Linear Schrodinger Equation for the weakly non-linear limit, and on numerical simulation of the fully non-linear equations for larger amplitudes. Envelope solitons exist for parameters in which the wave equation is focussing and they have the form of shape-conserving wave packages propagating roughly with group velocity. For the limit of maximum wave number, where the group velocity vanishes, standing wave packages result and can be linked via a bifurcation to the non-localised non-linear normal modes. Numerical applications are carried out on a simple discrete system with cyclic symmetry which can be seen as a reduced model of a bladed disk as found in turbo-machinery

    The influence of crack-imbalance orientation and orbital evolution for an extended cracked Jeffcott rotor

    Full text link
    Vibration peaks occurring at rational fractions of the fundamental rotating critical speed, here named Local Resonances, facilitate cracked shaft detection during machine shut-down. A modified Jeffcott-rotor on journal bearings accounting for gravity effects and oscillating around nontrivial equilibrium points is employed. Modal parameter selection allows this linear model to represent first mode characteristics of real machines. Orbit evolution and vibration patterns are analyzed, yielding useful results. Crack detection results indicate that, instead of 1x and 2x components, analysis of the remaining local resonances should have priority; this is due to crack-residual imbalance interaction and to 2x multiple induced origins. Therefore, local resonances and orbital evolution around 1/2, 1/3 and 1/4 of the critical speed are emphasized for various crack-imbalance orientations
    • …
    corecore