1,013 research outputs found

    Improved transfer matrix method without numerical instability

    Full text link
    A new improved transfer matrix method (TMM) is presented. It is shown that the method not only overcomes the numerical instability found in the original TMM, but also greatly improves the scalability of computation. The new improved TMM has no extra cost of computing time as the length of homogeneous scattering region becomes large. The comparison between the scattering matrix method(SMM) and our new TMM is given. It clearly shows that our new method is much faster than SMM.Comment: 5 pages,3 figure

    A single defect approximation for localized states on random lattices

    Full text link
    Geometrical disorder is present in many physical situations giving rise to eigenvalue problems. The simplest case of diffusion on a random lattice with fluctuating site connectivities is studied analytically and by exact numerical diagonalizations. Localization of eigenmodes is shown to be induced by geometrical defects, that is sites with abnormally low or large connectivities. We expose a ``single defect approximation'' (SDA) scheme founded on this mechanism that provides an accurate quantitative description of both extended and localized regions of the spectrum. We then present a systematic diagrammatic expansion allowing to use SDA for finite-dimensional problems, e.g. to determine the localized harmonic modes of amorphous media.Comment: final version as published, 6 pages, 1 ps-figur

    Comment on "Boson-fermion model beyond the mean-field approximation"

    Full text link
    In a recent paper [A.S.Alexandrov, J.Phys.:Condens.Matter 8, 6923 (1996); cond-mat/9603111], it has been suggested that there is no Cooper pairing in boson-fermion models of superconductivity. We show that this conjecture is based on an inconsistent approximation that violates an exact identity. Quite generally, the divergence of the fermion t-matrix (the Thouless criterion) is accompanied by the condensation of a boson mode.Comment: LaTeX, 5 pages, 2style files included, 4 embedded EPS figures, submitted to J.Phys.:Condens.Matte

    Duality Relation among Periodic Potential Problems in the Lowest Landau Level

    Full text link
    Using a momentum representation of a magnetic von Neumann lattice, we study a two-dimensional electron in a uniform magnetic field and obtain one-particle spectra of various periodic short-range potential problems in the lowest Landau level.We find that the energy spectra satisfy a duality relation between a period of the potential and a magnetic length. The energy spectra consist of the Hofstadter-type bands and flat bands. We also study the connection between a periodic short-range potential problem and a tight-binding model.Comment: 6 pages, 3 figures, final version to appear in PR

    Weak disorder expansion for localization lengths of quasi-1D systems

    Get PDF
    A perturbative formula for the lowest Lyapunov exponent of an Anderson model on a strip is presented. It is expressed in terms of an energy-dependent doubly stochastic matrix, the size of which is proportional to the strip width. This matrix and the resulting perturbative expression for the Lyapunov exponent are evaluated numerically. Dependence on energy, strip width and disorder strength are thoroughly compared with the results obtained by the standard transfer matrix method. Good agreement is found for all energies in the band of the free operator and this even for quite large values of the disorder strength

    Longitudinal Force on a Moving Potential

    Full text link
    We show a formal result of the longitudinal force acting on a moving potential. The potential can be velocity-dependent, which appears in various interesting physical systems, such as electrons in the presence of a magnetic flux-line, or phonons scattering off a moving vortex. By using the phase-shift analysis, we are able to show the equivalence between the adiabatic perturbation theory and the kinetic theory for the longitudinal force in the dilute gas limit.Comment: RevTeX, 4 pages, revised tex

    Bloch electron in a magnetic field and the Ising model

    Full text link
    The spectral determinant det(H-\epsilon I) of the Azbel-Hofstadter Hamiltonian H is related to Onsager's partition function of the 2D Ising model for any value of magnetic flux \Phi=2\pi P/Q through an elementary cell, where P and Q are coprime integers. The band edges of H correspond to the critical temperature of the Ising model; the spectral determinant at these (and other points defined in a certain similar way) is independent of P. A connection of the mean of Lyapunov exponents to the asymptotic (large Q) bandwidth is indicated.Comment: 4 pages, 1 figure, REVTE

    Scattering of Phonons by a Vortex in a Superfluid

    Full text link
    Recent work gives a transverse force on an isolated moving vortex which is independent of the normal fluid velocity, but it is widely believed that the asymmetry of phonon scattering by a vortex leads to a transverse force dependent on the relative motion of the normal component and the vortex. We show that a widely accepted derivation of the transverse force is in error, and that a careful evaluation leads to a much smaller transverse force. We argue that a different approach is needed to get the correct expression. \pacs{67.40.Vs,67.57.Fg,47.37.+q,47.32.Cc}Comment: 4 page

    Vortex mass in a superfluid at low frequencies

    Full text link
    An inertial mass of a vortex can be calculated by driving it round in a circle with a steadily revolving pinning potential. We show that in the low frequency limit this gives precisely the same formula that was used by Baym and Chandler, but find that the result is not unique and depends on the force field used to cause the acceleration. We apply this method to the Gross-Pitaevskii model, and derive a simple formula for the vortex mass. We study both the long range and short range properties of the solution. We agree with earlier results that the non-zero compressibility leads to a divergent mass. From the short-range behavior of the solution we find that the mass is sensitive to the form of the pinning potential, and diverges logarithmically when the radius of this potential tends to zero.Comment: 4 page

    Quadrupole correlations and inertial properties of rotating nuclei

    Get PDF
    The contribution of quantum shape fluctuations to inertial properties of rotating nuclei has been analyzed for QQ-nuclear interaction using the random phase approximation (RPA). The different recipes to treat the cranking mean field plus RPA problem are considered. The effects of the dN=2 quadrupole matrix elements and the role of the volume conservation condition are discussed.Comment: 14 pages, 7 figures, To be published in J. Phys. G: Nucl. Phy
    • …
    corecore