1,687 research outputs found
A renormalization approach for the 2D Anderson model at the band edge: Scaling of the localization volume
We study the localization volumes (participation ratio) of electronic
wave functions in the 2d-Anderson model with diagonal disorder. Using a
renormalization procedure, we show that at the band edges, i.e. for energies
, is inversely proportional to the variance \var of the
site potentials. Using scaling arguments, we show that in the neighborhood of
, scales as V=\var^{-1}g((4-\ve E\ve)/\var) with the scaling
function . Numerical simulations confirm this scaling ansatz
Sufficient Conditions for Topological Order in Insulators
We prove the existence of low energy excitations in insulating systems at
general filling factor under certain conditions, and discuss in which cases
these may be identified as topological excitations. This proof is based on
previously proven locality results. In the case of half-filling it provides a
significantly shortened proof of the recent higher dimensional
Lieb-Schultz-Mattis theorem.Comment: 7 pages, no figure
Absence of localization in a disordered one-dimensional ring threaded by an Aharonov-Bohm flux
Absence of localization is demonstrated analytically to leading order in weak
disorder in a one-dimensional Anderson model of a ring threaded by an
Aharonov-Bohm (A-B) flux. The result follows from adapting an earlier
perturbation treatment of disorder in a superconducting ring subjected to an
imaginary vector potential proportional to a depinning field for flux lines
bound to random columnar defects parallel to the axis of the ring. The absence
of localization in the ring threaded by an A-B flux for sufficiently weak
disorder is compatible with large free electron type persistent current
obtained in recent studies of the above model
Topological winding properties of spin edge states in Kane-Mele graphene model
We study the spin edge states in the quantum spin-Hall (QSH) effect on a
single-atomic layer graphene ribbon system with both intrinsic and Rashba
spin-orbit couplings. The Harper equation for solving the energies of the spin
edge states is derived. The results show that in the QSH phase, there are
always two pairs of gapless spin-filtered edge states in the bulk energy gap,
corresponding to two pairs of zero points of the Bloch function on the
complex-energy Riemann surface (RS). The topological aspect of the QSH phase
can be distinguished by the difference of the winding numbers of the spin edge
states with different polarized directions cross the holes of the RS, which is
equivalent to the Z2 topological invariance proposed by Kane and Mele [Phys.
Rev. Lett. 95, 146802 (2005)].Comment: 9 pages, 10 figure
Ensemble Averaged Conductance Fluctuations in Anderson Localized Systems
We demonstrate the presence of energy dependent fluctuations in the
localization length, which depend on the disorder distribution. These
fluctuations lead to Ensemble Averaged Conductance Fluctuations (EACF) and are
enhanced by large disorder. For the binary distribution the fluctuations are
strongly enhanced in comparison to the Gaussian and uniform distributions.
These results have important implications on ensemble averaged quantities, such
as the transmission through quantum wires, where fluctuations can subsist to
very high temperatures. For the non-fluctuating part of the localization length
in one dimension we obtained an improved analytical expression valid for all
disorder strengths by averaging the probability density.Comment: 4 page
Orbital magnetization and Chern number in a supercell framework: Single k-point formula
The key formula for computing the orbital magnetization of a crystalline
system has been recently found [D. Ceresoli, T. Thonhauser, D. Vanderbilt, R.
Resta, Phys. Rev. B {\bf 74}, 024408 (2006)]: it is given in terms of a
Brillouin-zone integral, which is discretized on a reciprocal-space mesh for
numerical implementation. We find here the single -point limit, useful
for large enough supercells, and particularly in the framework of
Car-Parrinello simulations for noncrystalline systems. We validate our formula
on the test case of a crystalline system, where the supercell is chosen as a
large multiple of the elementary cell. We also show that--somewhat
counterintuitively--even the Chern number (in 2d) can be evaluated using a
single Hamiltonian diagonalization.Comment: 4 pages, 3 figures; appendix adde
Stability of the shell structure in 2D quantum dots
We study the effects of external impurities on the shell structure in
semiconductor quantum dots by using a fast response-function method for solving
the Kohn-Sham equations. We perform statistics of the addition energies up to
20 interacting electrons. The results show that the shell structure is
generally preserved even if effects of high disorder are clear. The Coulomb
interaction and the variation in ground-state spins have a strong effect on the
addition-energy distributions, which in the noninteracting single-electron
picture correspond to level statistics showing mixtures of Poisson and Wigner
forms.Comment: 7 pages, 8 figures, submitted to Phys. Rev.
The Complexity of Vector Spin Glasses
We study the annealed complexity of the m-vector spin glasses in the
Sherrington-Kirkpatrick limit. The eigenvalue spectrum of the Hessian matrix of
the Thouless-Anderson-Palmer (TAP) free energy is found to consist of a
continuous band of positive eigenvalues in addition to an isolated eigenvalue
and (m-1) null eigenvalues due to rotational invariance. Rather surprisingly,
the band does not extend to zero at any finite temperature. The isolated
eigenvalue becomes zero in the thermodynamic limit, as in the Ising case (m=1),
indicating that the same supersymmetry breaking recently found in Ising spin
glasses occurs in vector spin glasses.Comment: 4 pages, 2 figure
- …