12 research outputs found

    Increased thin-spine density in frontal cortex pyramidal neurons in a genetic rat model of schizophrenia-relevant features

    Get PDF
    The cellular mechanisms altered during brain wiring leading to cognitive disturbances in neurodevelopmental disorders remain unknown. We have previously reported altered cortical expression of neurodevelopmentally regulated synaptic markers in a genetic animal model of schizophrenia-relevant behavioral features, the Roman-High Avoidance rat strain (RHA-I). To further explore this phenotype, we looked at dendritic spines in cortical pyramidal neurons, as changes in spine density and morphology are one of the main processes taking place during adolescence. An HSV-viral vector carrying green fluorescent protein (GFP) was injected into the frontal cortex (FC) of a group of 11 RHA-I and 12 Roman-Low Avoidance (RLA-I) male rats. GFP labeled dendrites from pyramidal cells were 3D reconstructed and number and types of spines quantified. We observed an increased spine density in the RHA-I, corresponding to a larger fraction of immature thin spines, with no differences in stubby and mushroom spines. Glia cells, parvalbumin (PV) and somatostatin (SST) interneurons and surrounding perineuronal net (PNN) density are known to participate in FC and pyramidal neuron dendritic spine maturation. We determined by stereological-based quantification a significantly higher number of GFAP-positive astrocytes in the FC of the RHA-I strain, with no difference in microglia (Iba1-positive cells). The number of inhibitory PV, SST interneurons or PNN density, on the contrary, was unchanged. Results support our belief that the RHA-I strain presents a more immature FC, with some structural features like those observed during adolescence, adding construct validity to this strain as a genetic behavioral model of neurodevelopmental disorders

    Conditional Ablation of Myeloid TNF Improves Functional Outcome and Decreases Lesion Size after Spinal Cord Injury in Mice

    No full text
    Spinal cord injury (SCI) is a devastating condition consisting of an instant primary mechanical injury followed by a secondary injury that progresses for weeks to months. The cytokine tumor necrosis factor (TNF) plays an important role in the pathophysiology of SCI. We investigated the effect of myeloid TNF ablation (peripheral myeloid cells (macrophages and neutrophils) and microglia) versus central myeloid TNF ablation (microglia) in a SCI contusion model. We show that TNF ablation in macrophages and neutrophils leads to reduced lesion volume and improved functional outcome after SCI. In contrast, TNF ablation in microglia only or TNF deficiency in all cells had no effect. TNF levels tended to be decreased 3 h post-SCI in mice with peripheral myeloid TNF ablation and was significantly decreased 3 days after SCI. Leukocyte and microglia populations and all other cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, and IFNγ) and chemokines (CCL2, CCL5, and CXCL1) investigated, in addition to TNFR1 and TNFR2, were comparable between genotypes. Analysis of post-SCI signaling cascades demonstrated that the MAPK kinase SAPK/JNK decreased and neuronal Bcl-XL levels increased post-SCI in mice with ablation of TNF in peripheral myeloid cells. These findings demonstrate that peripheral myeloid cell-derived TNF is pathogenic in SCI
    corecore