6 research outputs found

    Familial aggregation of atrial fibrillation in Iceland

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldAIMS: To examine the heritability of atrial fibrillation (AF) in Icelanders, utilizing a nationwide genealogy database and population-based data on AF. AF is a disorder with a high prevalence, which has been known to cluster in families, but the heritability of the common form has not been well defined. METHODS AND RESULTS: The study population included 5269 patients diagnosed since 1987 and age-sex-matched controls randomly selected from the genealogy database. Kinship coefficients (KC), expressed as genealogical index of familiality (GIF = average KC x 100,000), were calculated before and after exclusion of relatives separated by one to five meiotic events. Risk ratios (RR) were calculated for first- to fifth-degree relatives. The average pairwise GIF among patients with AF was 15.9 (mean GIF for controls 13.9, 95%CI = 13.3, 14.4); this declined to 15.4 (mean GIF for controls 13.6, 95%CI = 13.1, 14.2) after exclusion of relatives separated by one meiosis and to 13.7 (mean GIF for controls 12.6, 95%CI = 12.1, 13.2), 12.7 (mean GIF for controls 11.9, 95%CI = 11.4, 12.4), and 11.3 (mean GIF for controls 10.6, 95%CI = 10.1, 11.1) after exclusion of relatives within two, three, and four meioses, respectively (all P<0.00001). RRs among relative pairs also declined incrementally, from 1.77 in first-degree relatives to 1.36, 1.18, 1.10, and 1.05 in second- through fifth-degree relatives (all P<0.001), consistent with the declining proportion of alleles shared identically by descent. When the analysis was limited to subjects diagnosed with AF before the age of 60, first-degree relatives of the AF cases were nearly five times more likely to have AF than the general population. CONCLUSION: AF shows strong evidence of heritability among unselected patients in Iceland, suggesting that there may be undiscovered genetic variants underlying the risk of the common form of AF

    Cancer as a Complex Phenotype: Pattern of Cancer Distribution within and beyond the Nuclear Family

    Get PDF
    BACKGROUND: The contribution of low-penetrant susceptibility variants to cancer is not clear. With the aim of searching for genetic factors that contribute to cancer at one or more sites in the body, we have analyzed familial aggregation of cancer in extended families based on all cancer cases diagnosed in Iceland over almost half a century. METHODS AND FINDINGS: We have estimated risk ratios (RRs) of cancer for first- and up to fifth-degree relatives both within and between all types of cancers diagnosed in Iceland from 1955 to 2002 by linking patient information from the Icelandic Cancer Registry to an extensive genealogical database, containing all living Icelanders and most of their ancestors since the settlement of Iceland. We evaluated the significance of the familial clustering for each relationship separately, all relationships combined (first- to fifth-degree relatives) and for close (first- and second-degree) and distant (third- to fifth-degree) relatives. Most cancer sites demonstrate a significantly increased RR for the same cancer, beyond the nuclear family. Significantly increased familial clustering between different cancer sites is also documented in both close and distant relatives. Some of these associations have been suggested previously but others not. CONCLUSION: We conclude that genetic factors are involved in the etiology of many cancers and that these factors are in some cases shared by different cancer sites. However, a significantly increased RR conferred upon mates of patients with cancer at some sites indicates that shared environment or nonrandom mating for certain risk factors also play a role in the familial clustering of cancer. Our results indicate that cancer is a complex, often non-site-specific disease for which increased risk extends beyond the nuclear family

    A Schematic Representation of Cancer Pairs Demonstrating Significant Familial Aggregation

    No full text
    <p>Cancer pairs that demonstrate significant familial co-clustering (first- to fifth-degree relatives) at the 0.05 level after adjustment for multiple testing (nominal <i>p</i> value < 1 × 10<sup>-4</sup>) are joined by lines. The thickness of the lines joining the pairs are based on nominal <i>p</i> values corresponding to the significance of the familiality in distant relatives (third to fifth degree): bold, <i>p</i> ≤ 0.001; solid, <i>p</i> ≤ 0.01; and dashed, <i>p</i> ≤ 0.05. The number on the lines joining each pair indicates the cross-cancer RR in first-degree relatives. Shaded ovals correspond to individual cancer sites that were significant for the combined group of first- to fifth-degree relatives at the 0.05 level after Bonferroni adjustment (see <a href="http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.0010065#pmed-0010065-t001" target="_blank">Table 1</a>).</p
    corecore