127 research outputs found

    Mutation analysis of the ATR gene in breast and ovarian cancer families

    Get PDF
    INTRODUCTION: Mutations in BRCA1, BRCA2, ATM, TP53, CHK2 and PTEN account for only 20–30% of the familial aggregation of breast cancer, which suggests the involvement of additional susceptibility genes. The ATR (ataxia-telangiectasia- and Rad3-related) kinase is essential for the maintenance of genomic integrity. It functions both in parallel and cooperatively with ATM, but whereas ATM is primarily activated by DNA double-strand breaks induced by ionizing radiation, ATR has been shown to respond to a much broader range of DNA damage. Upon activation, ATR phosphorylates several important tumor suppressors, including p53, BRCA1 and CHK1. Based on its central function in the DNA damage response, ATR is a plausible candidate gene for susceptibility to cancer. METHODS: We screened the entire coding region of the ATR gene for mutations in affected index cases from 126 Finnish families with breast and/or ovarian cancer, 75 of which were classified as high-risk and 51 as moderate-risk families, by using conformation sensitive gel electrophoresis and direct sequencing. RESULTS: A large number of novel sequence variants were identified, four of which – Glu254Gly, Ser1142Gly, IVS24-48G>A and IVS26+15C>T – were absent from the tested control individuals (n = 300). However, the segregation of these mutations with the cancer phenotype could not be confirmed, partly because of the lack of suitable DNA samples. CONCLUSION: The present study does not support a major role for ATR mutations in hereditary susceptibility to breast and ovarian cancer

    Impaired Thymic Selection and Abnormal Antigen-Specific T Cell Responses in Foxn1Δ/Δ Mutant Mice

    Get PDF
    Foxn1(Δ/Δ) mutant mice have a specific defect in thymic development, characterized by a block in TEC differentiation at an intermediate progenitor stage, and blocks in thymocyte development at both the DN1 and DP cell stages, resulting in the production of abnormally functioning T cells that develop from an atypical progenitor population. In the current study, we tested the effects of these defects on thymic selection.We used Foxn1(Δ/Δ); DO11 Tg and Foxn1(Δ/Δ); OT1 Tg mice as positive selection and Foxn1(Δ/Δ); MHCII I-E mice as negative selection models. We also used an in vivo system of antigen-specific reactivity to test the function of peripheral T cells. Our data show that the capacity for positive and negative selection of both CD4 and CD8 SP thymocytes was reduced in Foxn1(Δ/Δ) mutants compared to Foxn1(+/Δ) control mice. These defects were associated with reduction of both MHC Class I and Class II expression, although the resulting peripheral T cells have a broad TCR Vβ repertoire. In this deficient thymic environment, immature CD4 and CD8 SP thymocytes emigrate from the thymus into the periphery. These T cells had an incompletely activated profile under stimulation of the TCR signal in vitro, and were either hypersensitive or hyporesponsive to antigen-specific stimulation in vivo. These cell-autonomous defects were compounded by the hypocellular peripheral environment caused by low thymic output.These data show that a primary defect in the thymic microenvironment can cause both direct defects in selection which can in turn cause indirect effects on the periphery, exacerbating functional defects in T cells

    The effect of Mg-to-Ca ratio ratios in artificial seawater, at different ionic products, upon the induction time, and the mineralogy of calcium carbonate: a laboratory study

    Get PDF
    The effects of the Mg2+ ion concentration and the ionic products of carbonate upon the induction time for the onset of precipitation and the different mineralogies of calcium carbonates were studied. It was shown that Mg2+ ions delay the spontaneous precipitation of calcium carbonate from supersaturated solutions (e.g. seawater) with respect to calcium carbonate mineral to such an extent that only biogenic removal of skeletal calcium carbonate is possible from the open ocean. Low concentrations of magnesium ions in solution favor calcite formation while aragonite is formed at high magnesium concentrations. The mole% of MgCO3 in magnesian calcite increases with the increase of (Mg2+) in solution and with the increase of (CO32−) in the presence of (Mg2+) in solution. Therefore, one would expect that high Mg-calcite is formed in wormed coastal regions, where high temperature and or the increase of photosynthesis activities tend to expel CO2 and increase supersaturation, and low-magnesian calcite is favored in meteoric-vadose environment where low concentration of magnesium ions or in burial environment where respiration and oxidation is high and decrease supersaturation

    Complete Mitochondrial Genome Sequence of Three Tetrahymena Species Reveals Mutation Hot Spots and Accelerated Nonsynonymous Substitutions in Ymf Genes

    Get PDF
    The ciliate Tetrahymena, a model organism, contains divergent mitochondrial (Mt) genome with unusual properties, where half of its 44 genes still remain without a definitive function. These genes could be categorized into two major groups of KPC (known protein coding) and Ymf (genes without an identified function). To gain insights into the mechanisms underlying gene divergence and molecular evolution of Tetrahymena (T.) Mt genomes, we sequenced three Mt genomes of T.paravorax, T.pigmentosa, and T.malaccensis. These genomes were aligned and the analyses were carried out using several programs that calculate distance, nucleotide substitution (dn/ds), and their rate ratios (ω) on individual codon sites and via a sliding window approach. Comparative genomic analysis indicated a conserved putative transcription control sequence, a GC box, in a region where presumably transcription and replication initiate. We also found distinct features in Mt genome of T.paravorax despite similar genome organization among these ∼47 kb long linear genomes. Another significant finding was the presence of at least one or more highly variable regions in Ymf genes where majority of substitutions were concentrated. These regions were mutation hotspots where elevated distances and the dn/ds ratios were primarily due to an increase in the number of nonsynonymous substitutions, suggesting relaxed selective constraint. However, in a few Ymf genes, accelerated rates of nonsynonymous substitutions may be due to positive selection. Similarly, on protein level the majority of amino acid replacements occurred in these regions. Ymf genes comprise half of the genes in Tetrahymena Mt genomes, so understanding why they have not been assigned definitive functions is an important aspect of molecular evolution. Importantly, nucleotide substitution types and rates suggest possible reasons for not being able to find homologues for Ymf genes. Additionally, comparative genomic analysis of complete Mt genomes is essential in identifying biologically significant motifs such as control regions

    Mechanisms of T cell organotropism

    Get PDF
    F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation

    Regulatory T cells and their role in rheumatic diseases: a potential target for novel therapeutic development

    Get PDF
    Regulatory T cells have an important role in limiting immune reactions and are essential regulators of self-tolerance. Among them, CD4+CD25high regulatory T cells are the best-described subset. In this article, we summarize current knowledge on the phenotype, function, and development of CD4+CD25high regulatory T cells. We also review the literature on the role of these T cells in rheumatic diseases and discuss the potential for their use in immunotherapy

    Reactive transport codes for subsurface environmental simulation

    Full text link
    • …
    corecore