363 research outputs found

    Aquila X--1: a low inclination soft X-ray transient

    Get PDF
    We have obtained I-band photometry of the neutron star X-ray transient Aql X--1 during quiescence. We find a periodicity at 2.487 cd-1, which we interpret as twice the orbital frequency (19.30+/-0.05 h). Folding the data on the orbital period, we model the light curve variations as the ellipsoidal modulation of the secondary star. We determine the binary inclination to be 20--31 degrees (90 per cent confidence) and also 95 per cent upper limits to the radial velocity semi-amplitude and rotational broadening of the secondary star to be 117 kms-1 and 50 kms-1 respectively.Comment: 4 pages text, 3 figures, to appear in MNRA

    XMM-Newton observations of the low-luminosity cataclysmic variable V405 Pegasi

    Full text link
    V405 Peg is a low-luminosity cataclysmic variable (CV) that was identified as the optical counterpart of the bright, high-latitude ROSAT all-sky survey source RBS1955. The system was suspected to belong to a largely undiscovered population of hibernating CVs. Despite intensive optical follow-up its subclass however remained undetermined. We want to further classify V405 Peg and understand its role in the CV zoo via its long-term behaviour, spectral properties, energy distribution and accretion luminosity. We perform a spectral and timing analysis of \textit{XMM-Newton} X-ray and ultra-violet data. Archival WISE, HST, and Swift observations are used to determine the spectral energy distribution and characterize the long-term variability. The X-ray spectrum is characterized by emission from a multi-temperature plasma. No evidence for a luminous soft X-ray component was found. Orbital phase-dependent X-ray photometric variability by ∌50%\sim50\% occurred without significant spectral changes. No further periodicity was significant in our X-ray data. The average X-ray luminosity during the XMM-Newton observations was L_X, bol simeq 5e30 erg/s but, based on the Swift observations, the corresponding luminosity varied between 5e29 erg/s and 2e31 erg/son timescales of years. The CV subclass of this object remains elusive. The spectral and timing properties show commonalities with both classes of magnetic and non-magnetic CVs. The accretion luminosity is far below than that expected for a standard accreting CV at the given orbital period. Objects like V405 Peg might represent the tip of an iceberg and thus may be important contributors to the Galactic Ridge X-ray Emission. If so they will be uncovered by future X-ray surveys, e.g. with eROSITA.Comment: A&A, in pres

    SDSS Unveils a Population of Intrinsically Faint Cataclysmic Variables at the Minimum Orbital Period

    Get PDF
    We discuss the properties of 137 cataclysmic variables (CVs) which are included in the Sloan Digital Sky Survey (SDSS) spectroscopic data base, and for which accurate orbital periods have been measured. 92 of these systems are new discoveries from SDSS and were followed-up in more detail over the past few years. 45 systems were previously identified as CVs because of the detection of optical outbursts and/or X-ray emission, and subsequently re-identified from the SDSS spectroscopy. The period distribution of the SDSS CVs differs dramatically from that of all the previously known CVs, in particular it contains a significant accumulation of systems in the orbital period range 80–86 min. We identify this feature as the elusive ‘period minimum spike’ predicted by CV population models, which resolves a long-standing discrepancy between compact binary evolution theory and observations. We show that this spike is almost entirely due to the large number of CVs with very low accretion activity identified by SDSS. The optical spectra of these systems are dominated by emission from the white dwarf photosphere, and display little or no spectroscopic signature from the donor stars, suggesting very low mass companion stars. We determine the average absolute magnitude of these low-luminosity CVs at the period minimum to be 〈Mg〉= 11.6 ± 0.7. Comparison of the SDSS CV sample to the CVs found in the Hamburg Quasar Survey and the Palomar Green Survey suggests that the depth of SDSS is the key ingredient resulting in the discovery of a large number of intrinsically faint short-period systems

    The Peculiar Type Ic Supernova 1997ef: Another Hypernova

    Get PDF
    SN 1997ef has been recognized as a peculiar supernova from its light curve and spectral properties. The object was classified as a Type Ic supernova (SN Ic) because its spectra are dominated by broad absorption lines of oxygen and iron, lacking any clear signs of hydrogen or helium line features. The light curve is very different from that of previously known SNe Ic, showing a very broad peak and a slow tail. The strikingly broad line features in the spectra of SN 1997ef, which were also seen in the hypernova SN 1998bw, suggest the interesting possibility that SN 1997ef may also be a hypernova. The light curve and spectra of SN 1997ef were modeled first with a standard SN~Ic model assuming an ordinary kinetic energy of explosion EK=1051E_{\rm K} = 10^{51} erg. The explosion of a CO star of mass MCO≈6M⊙M_{\rm CO} \approx 6 M_\odot gives a reasonably good fit to the light curve but clearly fails to reproduce the broad spectral features. Then, models with larger masses and energies were explored. Both the light curve and the spectra of SN 1997ef are much better reproduced by a C+O star model with EK=E_{\rm K} = 8 \e{51} erg and MCO=10M⊙M_{\rm CO} = 10 M_\odot. Therefore, we conclude that SN 1997ef is very likely a hypernova on the basis of its kinetic energy of explosion. Finally, implications for the deviation from spherical symmetry are discussed in an effort to improve the light curve and spectral fits.Comment: "To appear in the Astrophysical Journal, Vol.534 (2000)

    Spectroscopy of Seven Cataclysmic Variables with Periods Above Five Hours

    Full text link
    We present spectroscopy of seven cataclysmic variable stars with orbital periods P(orb) greater than 5 hours, all but one of which are known to be dwarf novae. Using radial velocity measurements we improve on previous orbital period determinations, or derive periods for the first time. The stars and their periods are TT Crt, 0.2683522(5) d; EZ Del, 0.2234(5) d; LL Lyr, 0.249069(4) d; UY Pup, 0.479269(7) d; RY Ser, 0.3009(4) d; CH UMa, 0.3431843(6) d; and SDSS J081321+452809, 0.2890(4) d. For each of the systems we detect the spectrum of the secondary star, estimate its spectral type, and derive a distance based on the surface brightness and Roche lobe constraints. In five systems we also measure the radial velocity curve of the secondary star, estimate orbital inclinations, and where possible estimate distances based on the MV(max) vs.P(orb) relation found by Warner. In concordance with previous studies, we find that all the secondary stars have, to varying degrees, cooler spectral types than would be expected if they were on the main sequence at the measured orbital period.Comment: 25 pages, 2 figures, accepted for Publications of the Astronomical Society of the Pacifi

    HS 2331+3905: The Cataclysmic Variable That Has It All

    Get PDF
    We report detailed follow-up observations of the cataclysmic variable HS 2331+3905, identified as an emission- line object in the Hamburg Quasar Survey. An orbital period of 81.08 min is unambiguously determined from the detection of eclipses in the light curves of HS 2331+3905. A second photometric period is consistently detected at P ≃ 83.38 min, ∌2.8% longer than Porb, which we tentatively relate to the presence of permanent superhumps. High time resolution photometry exhibits short-timescale variability on time scales of ≃5−6 min which we interpret as non-radial white dwarf pulsations, as well as a coherent signal at 1.12 min, which is likely to be the white dwarf spin period. A large-amplitude quasi-sinusoidal radial velocity modulation of the Balmer and Helium lines with a period ∌3.5 h is persistently detected throughout three seasons of time-resolved spectroscopy. However, this spectroscopic period, which is in no way related to the orbital period, is not strictly coherent but drifts in period and/or phase on time scales of a few days. Modeling the far-ultraviolet to infrared spectral energy distribution of HS 2331+3905, we determine a white dwarf temperature of Teff ≃ 10 500 K (assuming Mwd = 0.6 M⊙), close to the ZZ Ceti instability strip of single white dwarfs. The spectral model implies a distance of d = 90 ± 15 pc, and a low value for the distance is supported by the large proper motion of the system, ÎŒ = 0.14â€Čâ€Č yr−1. The non-detection of molecular bands and the low J, H, and K fluxes of HS 2331+3905 make this object a very likely candidate for a brown-dwarf donor

    The Dwarf Novae of Shortest Period

    Get PDF
    We present observations of the dwarf novae GW Lib, V844 Her, and DI UMa. Radial velocities of H-alph yield orbital periods of 0.05332 +- 0.00002 d (= 76.78 m) for GW Lib and and 0.054643 +- 0.000007 d (= 78.69 m) for V844 Her. Recently, the orbital period of DI UMa was found to be only 0.054564 +- 0.000002 d (= 78.57 m) by Fried et al. (1999), so these are the three shortest orbital periods among dwarf novae with normal-abundance secondaries. GW Lib has attracted attention as a cataclysmic binary showing apparent ZZ Ceti-type pulsations of the white dwarf primary. Its spectrum shows sharp Balmer emission flanked by strong, broad Balmer absorption, indicating a dominant contribution by white-dwarf light. Analysis of the Balmer absorption profiles is complicated by the unknown residual accretion luminosity and lack of coverage of the high Balmer lines. Our best-fit model atmospheres are marginally hotter than the ZZ Ceti instability strip, in rough agreement with recent ultraviolet results from HST. The spectrum and outburst behavior of GW Lib make it a near twin of WZ Sge, and we estimate it to have a quiescent V absolute magnitude 12. Comparison with archival data reveals proper motion of 65 +- 12 mas/yr. The mean spectrum of V844 Her is typical of SU UMa dwarf novae. We detected superhumps in the 1997 May superoutburst with superhump period = 0.05597 +- 0.00005 d. The spectrum of DI UMa appears normal for a dwarf nova near minimum light. These three dwarf novae have nearly identical short periods but completely dissimilar outburst characteristics. We discuss possible implications.Comment: Accepted for publication in Publications of the Astronomical Society of the Pacific; 16 pages, 6 figure

    On the Orbital Period of the New Cataclysmic Variable EUVE J2115-586

    Get PDF
    We have obtained phase-resolved spectroscopy (3660-6040 Å) of the recently discovered cataclysmic variable EUVE J21 15-586 using the 74-inch telescope at Mount Stromlo Observatory. The radial velocity is modulated over a period of 110.8 min with a possible one-cycle-per-day alias of 102.8 min, and a semiamplitude of ≍270 km s-1 at HÎČ and ≍390 km s-1 at He II λ4686. The spectroscopic appearance (H I Balmer, Ca II, He I, He II emission lines), the orbital period, and the velocity amplitude indicate that this cataclysmic variable is probably an AM Her type; the absence of cyclotron humps indicates a low intensity magnetic field (B\u3c20 MG). Extreme ultraviolet emission phased at the orbital period shows evidence of variability, but additional EUV/soft x-ray observations are recommended
    • 

    corecore