165 research outputs found

    Heterogeneous accretion of Earth inferred from Mo-Ru isotope systematics

    Get PDF
    The Mo and Ru isotopic compositions of meteorites and the bulk silicate Earth (BSE) hold important clues about the provenance of Earth's building material. Prior studies have argued that non-carbonaceous (NC) and carbonaceous (CC) meteorite groups together define a Mo-Ru ‘cosmic’ correlation, and that the BSE plots on the extension of this correlation. These observations were taken as evidence that the final 10–15% of Earth's accreted material derived from a homogeneous inner disk reservoir with an enstatite chondrite-like isotopic composition. Here, using new Mo and Ru isotopic data for previously uninvestigated meteorite groups, we show that the Mo-Ru correlation only exists for NC meteorites, and that both the BSE and CC meteorites fall off this Mo-Ru correlation. These observations indicate that the final stages of Earth's accretion were heterogeneous and consisted of a mixture of NC and CC materials. The Mo-Ru isotope systematics are best accounted for by either an NC heritage of the late veneer combined with a CC heritage of the Moon-forming giant impactor, or by mixed NC-CC compositions for both components. The involvement of CC bodies in the late-stage accretionary assemblage of Earth is consistent with chemical models for core-mantle differentiation, which argue for the addition of more oxidized and volatile-rich material toward the end of Earth's formation. As such, this study resolves the inconsistencies between homogeneous accretion models based on prior interpretations of the Mo-Ru systematics of meteorites and the chemical evidence for heterogeneous accretion of Earth

    Core Formation and Mantle Differentiation on Mars

    Get PDF
    Geochemical investigation of Martian meteorites (SNC meteorites) yields important constraints on the chemical and geodynamical evolution of Mars. These samples may not be representative of the whole of Mars; however, they provide constraints on the early differentiation processes on Mars. The bulk composition of Martian samples implies the presence of a metallic core that formed concurrently as the planet accreted. The strong depletion of highly siderophile elements in the Martian mantle is only possible if Mars had a large scale magma ocean early in its history allowing efficient separation of a metallic melt from molten silicate. The solidification of the magma ocean created chemical heterogeneities whose ancient origin is manifested in the heterogeneous 142Nd and 182W abundances observed in different meteorite groups derived from Mars. The isotope anomalies measured in SNC meteorites imply major chemical fractionation within the Martian mantle during the life time of the short-lived isotopes 146Sm and 182Hf. The Hf-W data are consistent with very rapid accretion of Mars within a few million years or, alternatively, a more protracted accretion history involving several large impacts and incomplete metal-silicate equilibration during core formation. In contrast to Earth early-formed chemical heterogeneities are still preserved on Mars, albeit slightly modified by mixing processes. The preservation of such ancient chemical differences is only possible if Mars did not undergo efficient whole mantle convection or vigorous plate tectonic style processes after the first few tens of millions of years of its histor

    Heterogeneous accretion of Earth inferred from Mo-Ru isotope systematics

    Get PDF
    The Mo and Ru isotopic compositions of meteorites and the bulk silicate Earth (BSE) hold important clues about the provenance of Earth's building material. Prior studies have argued that non-carbonaceous (NC) and carbonaceous (CC) meteorite groups together define a Mo-Ru ‘cosmic’ correlation, and that the BSE plots on the extension of this correlation. These observations were taken as evidence that the final 10–15% of Earth's accreted material derived from a homogeneous inner disk reservoir with an enstatite chondrite-like isotopic composition. Here, using new Mo and Ru isotopic data for previously uninvestigated meteorite groups, we show that the Mo-Ru correlation only exists for NC meteorites, and that both the BSE and CC meteorites fall off this Mo-Ru correlation. These observations indicate that the final stages of Earth's accretion were heterogeneous and consisted of a mixture of NC and CC materials. The Mo-Ru isotope systematics are best accounted for by either an NC heritage of the late veneer combined with a CC heritage of the Moon-forming giant impactor, or by mixed NC-CC compositions for both components. The involvement of CC bodies in the late-stage accretionary assemblage of Earth is consistent with chemical models for core-mantle differentiation, which argue for the addition of more oxidized and volatile-rich material toward the end of Earth's formation. As such, this study resolves the inconsistencies between homogeneous accretion models based on prior interpretations of the Mo-Ru systematics of meteorites and the chemical evidence for heterogeneous accretion of Earth

    Age and genetic relationships among CB, CH and CR chondrites

    Full text link
    The carbonaceous Bencubbin-like (CB), high-metal (CH), and Renazzo-like (CR) chondrites are metal-rich chondrites that have been suggested to be genetically linked and are sometimes grouped together as the CR chondrite clan. Of these, the CB and CH chondrites are thought to have formed in an impact-generated vapor-melt plume from material that may be isotopically akin to CR chondrites. We report Mo, Ti, Cr, and Hf-W isotopic data for CB and CH chondrites in order to determine their formation time, to assess whether these chondrites are genetically related, and to evaluate their potential link to CR chondrites. An internal Hf-W isochron for the CH chondrite Acfer 182 yields an age of 3.8 +- 1.2 Ma after the formation of Ca-Al-rich inclusions (CAIs), which is indistinguishable from the mean Hf-W model age for CB metal of 3.8 +- 1.3 Ma. The Mo isotopic data for CB and CH chondrites indicate that both contain some of the same metal and silicate components, which themselves are isotopically distinct. As such, the different Mo isotopic compositions of bulk CB and CH chondrites reflect their distinct metal-to-silicate ratios. CR metal exhibits the same Mo isotopic composition as CB and CH metal, but CR silicates have distinct Mo and Ti isotopic compositions compared to CB and CH silicates, indicating that CB/CH chondrites may be genetically related to CR metal, but not to CR silicates. Together, the new isotopic data are consistent with formation of CB and CH chondrites in different regions of a common impact-generated vapor- melt plume and suggest that the CB and CH metal may derive from a metal-rich precursor genetically linked to CR chondrites. The Hf-W systematics of CH and CB chondrites indicate that the impact occurred at 3.8 +- 0.8 Ma after the formation of Ca-Al-rich inclusions and, hence, up to ~1 Ma earlier than previously inferred based on Pb- Pb chronology.Comment: 54 pages, 8 figures, 5 table

    Non-natural ruthenium isotope ratios of the undeclared 2017 atmospheric release consistent with civilian nuclear activities

    Get PDF
    Understanding the circumstances of the undeclared 2017 nuclear release of ruthenium that led to widespread detections of the radioisotope 106Ru in the Eurasian region, and whether it derives from a civilian or military source, is of major importance for society and future improvements in nuclear safety. Until now, the released nuclear material has merely been studied by analyzing short-lived radioisotopes. Here, we report precise measurements of the stable isotopic composition of ruthenium captured in air filters before, during, and after the nuclear release, and find that the ruthenium collected during the period of the 2017 nuclear release has a non-natural isotopic composition. By comparing our results with ruthenium isotopic compositions of spent nuclear fuels, we show that the release is consistent with the isotopic fingerprints of a civilian Russian water-water energetic reactor (VVER) fuel at the end of its lifetime, and is not related to the production of plutonium for nuclear weapons

    Transforming Dust to Planets

    Get PDF

    The tungsten-182 record of kimberlites above the African superplume: Exploring links to the core-mantle boundary

    Get PDF
    Many volcanic hotspots are connected via ‘plume’ conduits to thermochemical structures with anomalously low seismic velocities at the core-mantle boundary. Basaltic lavas from some of these hotspots show anomalous daughter isotope abundances for the short-lived ¹²⁹I-¹²⁹Xe, ¹⁴⁶Sm-¹⁴²Nd, and ¹⁸²Hf-¹⁸²W radioactive decay systems, suggesting that their lower mantle sources contain material that dates back to Earth-forming events during the first 100 million years in solar system history. Survival of such ‘primordial’ remnants in Earth's mantle places important constraints on the evolution and inner workings of terrestrial planets. Here we report high-precision ¹⁸²W/¹⁸⁴W measurements for a large suite of kimberlite volcanic rocks from across the African tectonic plate, which for the past 250 million years has drifted over the most prominent thermochemical seismic anomaly at the core-mantle boundary. This so-called African LLSVP, or ‘large low shear-wave velocity province’, is widely suspected to store early Earth remnants and is implicated as the ultimate source of global Phanerozoic kimberlite magmatism. Our results show, however, that kimberlites from above the African LLSVP, including localities with lower mantle diamonds such as Letseng and Karowe Orapa A/K6, lack anomalous ¹⁸²W signatures, with an average μ¹⁸²W value of 0.0 ± 4.1 (2SD) for the 18 occurrences studied. If kimberlites are indeed sourced from the African LLSVP or superplume, then the extensive ¹⁸²W evidence suggests that primordial or core-equilibrated mantle materials, which may contribute resolvable μ¹⁸²W excesses or deficits, are only minor or locally concentrated components in the lowermost mantle, for example in the much smaller ‘ultra-low velocity zones’ or ULVZs. However, the lack of anomalous ¹⁸²W may simply suggest that low-volume kimberlite magmas are not derived from hot lower mantle plumes. In this alternative scenario, kimberlite magmas originate from volatile-fluxed ambient convecting upper mantle domains beneath relatively thick and cold lithosphere from where previously ‘stranded’ lower mantle and transition zone diamonds can be plucked

    Isotopic constraints on genetic relationships among group IIIF iron meteorites, Fitzwater Pass, and the Zinder pallasite

    Full text link
    Complex interelement trends among magmatic IIIF iron meteorites are difficult to explain by fractional crystallization and have raised uncertainty about their genetic relationships. Nucleosynthetic Mo isotope anomalies provide a powerful tool to assess if individual IIIF irons are related to each other. However, while trace-element data are available for all nine IIIF irons, Mo isotopic data are limited to three samples. We present Mo isotopic data for all but one IIIF irons that help assess the genetic relationships among these irons, together with new Mo and W isotopic data for Fitzwater Pass (classified IIIF), and the Zinder pallasite (for which a cogenetic link with IIIF irons has been proposed). After correction for cosmic-ray exposure, the Mo isotopic compositions of the IIIF irons are identical within uncertainty and confirm their belonging to carbonaceous chondrite-type (CC) meteorites. The mean Mo isotopic composition of Group IIIF overlaps those Groups IIF and IID, but a common parent body for these groups is ruled out based on distinct trace element systematics. The new Mo isotopic data do not argue against a single parent body for the IIIF irons, and suggest a close genetic link among these samples. By contrast, Fitzwater Pass has distinct Mo and W isotopic compositions, identical to those of some non-magmatic IAB irons. The Mo and W isotope data for Zinder indicate that this meteorite is not related to IIIF irons, but belongs to the non-carbonaceous (NC) type and has the same Mo and W isotopic composition as main-group pallasites.Comment: Accepted for publication in Meteoritics & Planetary Scienc
    corecore