482 research outputs found

    Neutrino-pair bremsstrahlung by electrons in neutron star crusts

    Get PDF
    Neutrino-pair bremsstrahlung by relativistic degenerate electrons in a neutron-star crust at densities (10^9 - 1.5x10^{14}) g/cm^3 is analyzed. The processes taken into account are neutrino emission due to Coulomb scattering of electrons by atomic nuclei in a Coulomb liquid, and electron-phonon scattering and Bragg diffraction (the static-lattice contribution) in a Coulomb crystal. The static-lattice contribution is calculated including the electron band-structure effects for cubic Coulomb crystals of different types and also for the liquid crystal phases composed of rod- and plate-like nuclei in the neutron-star mantle (at 10^{14} - 1.5x10^{14} g/cm^3). The phonon contribution is evaluated with proper treatment of the multi-phonon processes which removes a jump in the neutrino bremsstrahlung emissivity at the melting point obtained in previous works. Below 10^{13} g/cm^3, the results are rather insensitive to the nuclear form factor, but results for the solid state near the melting point are affected significantly by the Debye-Waller factor and multi-phonon processes. At higher densities, the nuclear form factor becomes more significant. A comparison of the various neutrino generation mechanisms in neutron star crusts shows that electron bremsstrahlung is among the most important ones.Comment: 17 pages, 13 figures, LaTeX using aa.cls and epsf.sty. A&A, in pres

    Kaon Energies in Dense Matter

    Get PDF
    We discuss the role of kaon-nucleon and nucleon-nucleon correlations in kaon condensation in dense matter. Correlations raise the threshold density for kaon condensation, possibly to densities higher than those encountered in stable neutron stars.Comment: RevTeX, 11 pages, 2 PostScript figures; manuscript also available, in PostScript form, at http://www.nordita.dk/locinfo/preprints.htm

    On Neutrino Emission From Dense Matter Containing Meson Condensates

    Get PDF
    We consider the rate at which energy is emitted by neutrinos from the dense interior of neutron stars containing a Bose condensate of pions or kaons. The rates obtained are larger, by a factor of 2, than those found earlier, and are consistent with those found for the direct Urca processes.Comment: RevTeX, 10 page

    Kaon Condensation in the Bound-State Approach to the Skyrme Model

    Full text link
    We explore kaon condensation using the bound-state approach to the Skyrme model on a 3-sphere. The condensation occurs when the energy required to produce a KK^- falls below the electron fermi level. This happens at the baryon number density on the order of 3--4 times nuclear density.Comment: LaTeX format, 15 pages. 3 Postscript figures, compressed and uuencode

    Kaon Zero-Point Fluctuations in Neutron Star Matter

    Get PDF
    We investigate the contribution of zero-point motion, arising from fluctuations in kaon modes, to the ground state properties of neutron star matter containing a Bose condensate of kaons. The zero-point energy is derived via the thermodynamic partition function, by integrating out fluctuations for an arbitrary value of the condensate field. It is shown that the vacuum counterterms of the chiral Lagrangian ensure the cancellation of divergences dependent on μ\mu, the charge chemical potential, which may be regarded as an external vector potential. The total grand potential, consisting of the tree-level potential, the zero-point contribution, and the counterterm potential, is extremized to yield a locally charge neutral, beta-equilibrated and minimum energy ground state. In some regions of parameter space we encounter the well-known problem of a complex effective potential. Where the potential is real and solutions can be obtained, the contributions from fluctuations are found to be small in comparison with tree-level contributions.Comment: 40 pages RevTeX, 3 epsf figure

    State and Transition Models in Space and Time – Using STMs to Understand Broad Patterns of Ecosystem Change in Iceland

    Get PDF
    Managing ecological systems sustainably requires a deep understanding of ecosystem structure and the processes driving their dynamics. Conceptual models can lead to improved management, by providing a framework for organizing knowledge about a system and identifying the causal agents of change. We developed state-and-transition models (STMs) to describe landscape changes in Iceland over three historical periods with different human influence, from pre-settlement to present days. Our models identified the set of possible states, transitions and thresholds in these ecosystems and their changes over time. To illustrate the use of these models for predicting and improving management interventions, we applied our present-day STM to a case study in the central highlands of Iceland and monitored ecosystem changes within an ongoing field experiment with two management interventions (grazing exclusion and fertilization) in areas experiencing contrasting stages of degradation. The results of the experiment broadly align with the predictions of the model and underscore the importance of conceptual frameworks for adaptive management, where the best available knowledge is used to continuously refine and update the models

    Strange Particles in Dense Matter and Kaon Condensates

    Full text link
    We discuss the role of strangeness in dense matter and especially in neutron stars. The early (in density) introduction of hyperons found in many calculations is probably delayed by the decrease in vector mean field acting on the neutron. The decrease results from both conventional many-body rescattering effects and from the movement towards asymptotic freedom at high densities. Subthreshold KK^--meson production by the KaoS collaboration at GSI shows that the KK^--mass must be substantially lowered, by \gtrsim 200 MeV at ρ2ρ0\rho\sim 2\rho_0. It is shown that explicit chiral symmetry breaking through the kaon mass may be responsible for Σ\Sigma^--nucleon and Ξ\Xi^--nucleon scalar attraction being weaker than obtained by simple quark scaling. The normal mode of the strangeness minus, charge ee^-, excitation is constructed as a linear combination of KK^--meson and Σ\Sigma^-, neutron-hole state. Except for zero momentum, where the terms are unmixed the "kaesobar" is a linear combination of these two components.Comment: 10 pages, 8 postscript figures, Talk given at the International Conference on Hypernuclear and Strange Particle Physics (HYP97), Brookhaven Nat'l Lab., USA, October 13-18, 1997, to be published in Nucl. Phys.

    Nonequilibrium Weak Processes in Kaon Condensation I --- Reaction rate for the thermal kaon process ---

    Full text link
    We investigate the thermal kaon process,in which kaons are thermally produced via nucleon-nucleon collisions.This process is relevant to nonequilibrium dynamics of kaon condensation inside neutron stars.The reaction rates for these processes are calculated, and their temperature and density dependences are compared with those of other reaction rates.It is shown that the thermal kaon process is dominant over other relevant weak reactions throughout the nonequilibrium process, such as the kaon-induced Urca and the modified Urca reactions, and may control the entire evolution of the kaon condensate. The characteristic role of the soft and hard kaons during the evolution is explained, and implications for astrophysical phenomena are briefly discussed.Comment: 31 pages,incl.10 eps figures,RevTe

    First Order Kaon Condensation in Neutron Stars: Finite Size Effects in the Mixed Phase

    Get PDF
    We study the role of Coulomb and surface effects on the phase transition from dense nuclear matter to a mixed phase of nuclear and kaon-condensed matter. We calculate corrections to the bulk calculation of the equation of state (EOS) and the critical density for the transition by solving explicitly for spherical, cylindrical, and planar structures. The importance of Debye screening in the determination of the charged particle profiles is studied in some detail. We find that the surface and Coulomb contributions to the energy density are small, but that they play an important role in the determination of the critical pressure for the transition, as well as affecting the size and geometry of favored structures. This changes the EOS over a wide range of pressure and consequently increases the maximum mass by about 0.1 solar masses. Implications for transport properties of the mixed phase are also discussed.Comment: 18 pages, 6 figure
    corecore