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Abstract

We discuss the role of kaon-nucleon and nucleon-nucleon correlations in kaon

condensation in dense matter. Correlations raise the threshold density for

kaon condensation, possibly to densities higher than those encountered in

stable neutron stars.
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The possibility of kaon condensation in dense matter was suggested by Kaplan and Nelson

[1], and it has been discussed in many recent publications. [2{7]. The basic idea is that the

energy of a K�, �K, is lowered by interaction with nucleons, and in neutron star matter in

beta equilibrium one expects negative kaons to be present if the energy to create one in the

medium is less than the electron chemical potential, �e, the energy required to add an extra

electron.

One complication in determining the low energy interactions of kaons with nucleons is

that the interactions of kaons with protons in vacuo is dominated by the �(1405) resonance.

Fortunately this does not a�ect the K� interaction with neutrons, which is expected to

dominate in neutron stars. In dense matter the e�ects of the �(1405) are likely unimportant,

because the kinematic region of interest is far from the resonance. To describe the KN

interactions Brown, Lee, Rho, and Thorsson [5], herafter denoted by BLRT, employed an

e�ective Lagrangian based on chiral perturbation theory. To circumvent the di�culties with

the resonance, parameters of the Lagrangian were �tted to K+N; (N = n or p), data, which

are una�ected by the resonance. The Lagrangian was treated in mean �eld theory, and

the density for condensation was found to be � 3 � 4�0, where �0 = 0:16fm�3 is nuclear

matter density. This is to be compared with the central density of about 4�0 for a neutron

star of mass 1:4M� according to the estimates of Wiringa, Fiks and Fabrocini [8] using

realistic models of nuclear forces. The conclusion was that kaon condensation could a�ect

the structure, maximum mass and cooling rates of neutron stars signi�cantly.

In this Letter, we �rst show that an important contribution to the kaon energy in the

BLRT treatment is the �rst term in an expansion in powers of the particle density, with a

strength proportional to kaon-nucleon scattering lengths. We then argue that kaon-nucleon

correlations in the medium will be reduced compared with those for a kaon and nucleon in

vacuo, and that consequently the attraction experienced by a kaon in matter will be smaller

that earlier estimates indicated.

BLRT use the Lagrangian of Jenkins and Manohar [9] containing terms of the two lowest

orders in the chiral expansion, and the nucleons are treated in mean �eld theory, that is
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their densities are assumed to be uniform, and equal to �n and �p. The spatially uniform

state, which is the one of lowest energy in this model, is given by

K� = vKe
�i�K t; (1)

and

L = (1 � �) _K+ _K�
� (m2

K � �2)K+K�

�
i

2
V (K� _K+

� _K�K+); (2)

with V = (�n + 2�p)=(2f
2), �2 = [�KN (�n + �p)�C(�n � �p)]=f

2, and � = �[ ~D(�n + �p)�

~D0(�n � �p)]=f
2: The V and �2 terms describe interactions of kaons with e�ective vector

and scalar �elds, while � takes into account energy dependence of the interaction. The pion

decay constant, f(� 93 MeV), and the constant C(� 33:5 MeV) are well determined, but

the values of �KN ; ~D; and ~D0 are not well known. The experimental K+N scattering lengths

[10] are used to determine ~D for chosen values of �KN from Eq.(27) of BLRT. Eq.(28) of

BLRT gives ~D0 = 0:092=mK . A large �KN implies a large energy dependence for the K�N

interaction, and the value �KN = 278 MeV was considered to be realistic by BLRT. It is

presently considered likely that �KN lies around 400 MeV [6]. The corresponding values of

~D are �0:23=mK for �KN = 278 MeV, and �0:48=mK for �KN = 400 MeV.

The K� energy may easily be calculated from Eq. (2), and is

�K =
1

2(1 � �)
((4(1� �)(m2

K � �2) + V 2)1=2 � V ); (3)

as used by BLRT. Observing that �; �2 and V are linear in the nucleon densities, �N , we

expand �K in powers of �N . To second order in the densities one �nds

�K = mK � (
V

2
+

�2

2mK

�
�mK

2
)

+
V 2

8mK

�
�4

8m3

K

+
3

8
�2mK �

V �

2
�

��2

4mK

: (4)

The �rst term is just the kaon rest mass. The second term may be expressed simply by

making use of the fact that the K�N scattering lengths [11] are given by
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aK�n =
�mR

4�f2mK

(
mK

2
+ �KN � C + ( ~D � ~D0)m2

K); (5)

aK�p =
�mR

4�f2mK

(mK + �KN + C + ( ~D + ~D0)m2

K); (6)

where mR = mNmK=(mN +mK) is the reduced mass. This term is thus the Lenz potential,

��K;Lenz =
2�

mR

(�naK�n + �paK�p); (7)

the well-known result for the energy shift to �rst order in the density ( see also Ref. [7]).

Thus for given values of the scattering lengths, the Lenz potential is independent of the

choice of �KN . However, terms of order �2N and higher depend on �KN . When �KN is

small, �2 and � are small (see Table 1) and the higher order terms dominated by V 2=(8mK)

are repulsive. In contrast, when �KN is large, �2 is large, 1�� can become zero at relatively

small densities, � 10�0, and the higher order terms are attractive.

The dependence of the kaon energy on nucleon density is illustrated in Fig.1 for a proton

fraction of 0.1. The curves labelled by �KN values are obtained from Eq.(3). For comparison,

the Lenz approximation, which contains only the �rst two terms in Eq.(4), is also shown. The

Lenz term gives a major contribution, while other terms representing the energy dependence

of the interaction and relativistic e�ects may be signi�cant.

The Lenz term is exact only at low density, and there are corrections to it when it is no

longer a good approximation to assume that the K�N relative wave function,  K�N , is the

same as for a pair of particles in vacuo. For s-wave scattering,  at low energy is given by

 K�N (r) = 1� aK�N=r for r > R; (8)

where R is the range of theK�N interaction. The corresponding unperturbed wave function

is simply unity.

To illustrate the e�ects, we represent the K�N interaction by potentials, corresponding

to the two possible isospin values, I = 0; 1. The scattering lengths are given by

aK�N =
mR

2�

Z
d3rVK�N (r) K�N (r); (9)
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where VK�N (r) represents the K
�N potential. Since  K�N(r<R) > 1 � aK�N=R when

VK�N(r) does not have a repulsive core, 2�aK�N=mR is larger than the volume integral of

VK�N(r) by a factor larger than 1�aK�N=R. The potential VK�N(r) is believed to be short

ranged, because the vector and scalar mesons that contribute to it have masses larger than

the inverse of hadron radii. Hence VK�N has a range R < 1 fm, and the factor 1� aK�N=R

is larger than 1.41 and 1.85 for N = n; p with the scattering lengths aK�n = �0:41 fm and

aK�p = �0:85 fm given by Eqs.(5) and (6), and the parameters taken from BLRT. These

factors represent the correlation between low-energy K� and nucleons in vacuo, and when

it is signi�cantly di�erent from unity, the Lenz term is valid only at densities low enough

that the radius, r0, of a sphere with a volume equal to the average volume per particle,

1=� = 4�r3
0
=3 is larger than both R and jaj.

In order to make quantitative estimates, we �tted square well and Yukawa potential to

the scattering lengths. For a square well of radius 0.7 fm, the depths are 126.2 MeV for

neutrons and 181 MeV for protons, while for R=1.0 fm, the corresponding values are 49.5

and 75.6 MeV. For a Yukawa potential V0 exp(�mxr)=(mxr), one �nds V0 = �795 MeV for

neutrons and -1075 MeV for protons if the mass, mx, of the exchanged particle is taken to be

that of the � meson, 770 MeV. In neutron stars, it is the K�n interaction that is the more

important, since the proton fraction of matter is small, and in Fig. 2 we show  K�n for the

three potentials. These exhibit the enhancement of the wave function for small separations.

At higher densities, the kaon energy in matter should be calculated either by summation

of diagrams, as in approaches that evaluate the K�N interaction G matrix and higher-order

correlations, or from variational wave functions of the type

	 = [�i=1;AfK�N(~rK� � ~ri)]	N(~r1; :::~rA); (10)

where fK�N represents the K�
� nucleon correlation and 	N is the ground state of a system

with A nucleons. At the large densities of interest in the cores of neutron stars, r0 < 1 fm.

When r0 < R , the kaon is weakly correlated with nucleons, and fK�N is unity to a good

approximation. In this limit the Lenz potential is replaced by the Hartree potential, and
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the K� energy is given by

�Hartree = mK +
Z
[�nVK�n(r) + �pVK�p(r)]d

3r: (11)

The Hartree potential is less attractive than the Lenz one by a factor in excess of 1 �

aK�N=R. In Fig. 1 we show estimates of the Hartree contribution to the kaon energy for the

potentials we �tted to the scattering lengths, as described above. The Hartree calculation

does not include e�ects of energy dependence of the interaction or of relativity, but since the

Hartree energy is closer to mK than is the Lenz term, we expect these e�ects to be smaller

than estimated from Eq. (4 ).

To investigate the validity of the Hartree approximation we now estimate second order

terms in the K�N interaction. For simplicity, we neglect the e�ects of the small number of

protons. In this case, the main coupling of the kaon is to neutron density uctuations, since

the kaon is spinless, and consequently does not couple to spin uctuations. The contribution

to the energy of a kaon at rest is then given by

��
(2)

K = �

X
~q;l

jV(q)j2
j < lj�~qj0 > j

2

�K(q)� �K(0) + El �E0

: (12)

Here < lj�~qj0 > is the matrix element of the operator for the Fourier transform of the

neutron density between the ground state, 0, and an excited state, l, and E0 and El are

the energies of the states. The energy of a kaon with momentum ~p is denoted by �K(p). If

one neglects the recoil energy of the kaon, one �nds an upper bound for the energy shift in

second order:

���
(2)

K <
1

2

X
~q

jV(q)j2�(q; ! = 0)

=
1

2

Z
d3rd3r0V(r)�(~r � ~r0)V(r0) (13)

where

�(q; 0) =
X
l

2
j < lj�~qj0 > j

2

El � E0

: (14)
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is the static density-density response function for neutrons, and �(r) is its Fourier transform.

The recoil energy of the kaon is comparable in magnitude to the excitation energy of the

neutron liquid for the wavevectors of importance, so the actual second order contribution

to the energy is expected to be considerably smaller than the bound. The long-wavelength

static density-density response function for neutron matter may be estimated by using the

thermodynamic identity �(q ! 0; ! = 0) = d�n=d�n, together with many-body calcula-

tions of the neutron chemical potential as a function of density. The dependence of � on

wavenumber is not well known, and to obtain an estimate of the second-order term we shall

replace �(q) by its long-wavelength value. At a density of 4�0, the estimates of the second

order term obtained by using values of d�n=d�n from Ref. [12] are 7 MeV (square well, R = 1

fm), 16 MeV (square well, R = 0:7 fm), and 46 MeV (Yukawa), and for higher densities

the estimates are smaller. In all cases, these energies are considerably less than the Hartree

potential.

The second order contribution to the energy is reduced greatly due to the strong repulsive

interactions between nucleons. Had we neglected neutron-neutron interactions, the estimates

of the second order term, which would then reect Pauli blocking of intermediate states

in the repeated scattering of a kaon by a neutron [13], would have been much greater.

For a free Fermi gas, �nd�n=d�n = 2EF =3, where EF � 58(�n=�0)
2=3 MeV is the Fermi

energy. At a density of 4�0, �nd�n=d�n estimated from the calculations of Friedman and

Pandharipande [12] is about 5 times larger than the free gas value. The fact that stable

neutron stars with a mass of 1.4 M� exist is a clear indication that the equation of state of

neutron star matter is considerably sti�er than that for a free Fermi gas. While there are

still uncertainties about the properties of matter at high densities, this increased sti�ness is

a rather general property shared by many models, as one can see from, e.g., Ref. [8]. As a

�rst step towards a more complete many-body treatment, we are calculating the kaon energy

using the lowest order constrained variational (LOCV) method [14], and the results will be

reported elsewhere.

To explore consequences of our calculations for kaon condensation, we also show in Fig.1
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the electron chemical potential, �e, calculated byWiringa et al. [8]. Our Hartree estimates of

kaon energies always lie above �e for essentially all stable neutron star models. However, for a

number of reasons we are prevented from de�nitively ruling out kaon condensation in neutron

stars. First, we have used simple approximate forms for the kaon-nucleon interactions, and

estimates should be made with better forms of the interaction, which should also take

into account the variation of the coupling constant, f , with nuclear density [5]. Second,

corrections to the Hartree result need to be investigated in detail. Third, as one can see

from the �gure, estimates of �e at high densities are subject to considerable uncertainty:

models of nucleon interactions that �t laboratory data equally well lead to very di�erent

values of �e in neutron star matter. All these points need to be looked into.

The main conclusion of our calculations is that, in a dense medium such as that in the

interiors of neutron stars, correlations are very di�erent from those for a dilute gas. This

has the e�ect of reducing the attraction experienced by a kaon in dense matter. While a

low-order chiral expansion may be useful for describing low-energy scattering of kaons by

nucleons, this information alone can predict the kaon energy only at low densities. When

the K�N scattering lengths are as large as indicated by BLRT, the Lenz approximation

overestimates the attraction felt by a K� in neutron star matter at the density of neutron

star cores by roughly a factor of 2.
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FIGURES

FIG. 1. Energy of a single K� in matter as a function of density, and electron chemical po-

tentials taken from the calculations of Ref.[6]. The calculations of kaon energies are for a proton

fraction of 0.1. Curves labelled by values of �KN , in MeV, are evaluated from Eq.(3). Hartree

potentials, evaluated from Eq.(11), are shown for square wells of radii R = 1 fm and R = 0:7

fm, and for a Yukawa potential. A and U refer to the AV14 and UV14 two-body potentials, and

VII and TNI to the UVII and TNI many-body potentials. The open circles indicate the central

densities of neutron stars with a mass of 1.4M�, and �lled circles indicate the central density for

the most massive stable neutron star for the given equation of state.

FIG. 2. Wave function for the relative motion of a K� and a neutron at zero energy for square

well potentials (solid lines) and a Yukawa potential ( long-dashed line). The short-dashed line

shows the asymptotic limit of the wave functions.
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