6 research outputs found

    Perinatal Whole Blood Zinc Status and Cytokines, Adipokines, and Other Immune Response Proteins

    Get PDF
    (1) Background: Zinc is an essential micronutrient and zinc deficiency is associated with immune dysfunction. The neonatal immune system is immature, and therefore an optimal neonatal zinc status may be important. The aim of this study was to investigate the possible association between neonatal whole blood (WB)-Zinc content and several immune markers. (2) Methods: In total, 398 healthy newborns (199 who later developed type 1 diabetes and 199 controls) from the Danish Newborn Screening Biobank had neonatal dried blood spots (NDBS) analyzed for WB-Zinc content and (i) cytokines: Interleukin (IL)-1β, IL-4, IL-6, IL-8, IL-10, IL-12 (p70), interferon gamma, tumor necrosis factor alpha, and transforming growth factor beta; (ii) adipokines: leptin and adiponectin; (iii) other immune response proteins: C-reactive protein (CRP), and mannose-binding lectin (MBL), and soluble triggering receptors expressed on myeloid cells1 (sTREM-1). WB-Zinc content was determined using laser ablation inductively coupled plasma mass spectrometry. For each analyte, the relative change in mean level was modelled by a robust log-normal model regression. (3) Results: No association was found between WB-Zinc content and all the immune response markers in either the unadjusted or adjusted models overall or when stratifying by case status. (4) Conclusions: In healthy Danish neonates, WB-Zinc content was not associated with cytokines, adipokines, CRP, MBL or sTREM, which does not indicate a strong immunological function of neonatal zinc status

    High neonatal blood iron content is associated with the risk of childhood type 1 diabetes mellitus

    Get PDF
    (1) Background: Iron requirement increases during pregnancy and iron supplementation is therefore recommended in many countries. However, excessive iron intake may lead to destruction of pancreatic β-cells. Therefore, we aim to test if higher neonatal iron content in blood is associated with the risk of developing type 1 diabetes mellitus (T1D) in childhood; (2) Methods: A case-control study was conducted, including 199 children diagnosed with T1D before the age of 16 years from 1991 to 2005 and 199 controls matched on date of birth. Information on confounders was available in 181 cases and 154 controls. Iron was measured on a neonatal single dried blood spot sample and was analyzed by laser ablation inductively coupled plasma mass spectrometry. Multivariate logistic regression was used to evaluate if iron content in whole blood was associated with the risk of T1D; (3) Results: A doubling of iron content increased the odds of developing T1D more than two-fold (odds ratio (95% CI), 2.55 (1.04; 6.24)). Iron content increased with maternal age (p = 0.04) and girls had higher content than boys (p = 0.01); (4) Conclusions: Higher neonatal iron content associates to an increased risk of developing T1D before the age of 16 years. Iron supplementation during early childhood needs further investigation, including the causes of high iron in neonates

    Maternal and Early Life Iron Intake and Risk of Childhood Type 1 Diabetes: A Danish Case-Cohort Study

    Get PDF
    Background: Iron overload has been associated with diabetes. Studies on iron exposure during pregnancy and in early life and risk of childhood type 1 diabetes (T1D) are sparse. We investigated whether iron supplementation during pregnancy and early in life were associated with risk of childhood T1D. Methods: In a case-cohort design, we identified up to 257 children with T1D (prevalence 0.37%) from the Danish National Birth Cohort through linkage with the Danish Childhood Diabetes Register. The primary exposure was maternal pure iron supplementation (yes/no) during pregnancy as reported in interview two at 30 weeks of gestation (n = 68,497 with iron supplement data). We estimated hazard ratios (HRs) using weighted Cox regression adjusting for multiple confounders. We also examined if offspring supplementation during the first 18 months of life was associated with later risk of T1D. Results: Maternal iron supplementation was not associated with later risk of T1D in the offspring HR 1.05 (95% CI: 0.76–1.45). Offspring intake of iron droplets during the first 18 months of life was inversely associated with risk of T1D HR 0.74 (95% CI: 0.55–1.00) (ptrend = 0.03). Conclusions: Our large-scale prospective study demonstrated no harmful effects of iron supplementation during pregnancy and in early life in regard to later risk of childhood T1D in the offspring

    Similar Skin Barrier Function in Persons with Type 1 Diabetes Compared with Healthy Controls

    No full text
    Contact dermatitis because of use of diabetes devices is frequent in individuals with type 1 diabetes (TD1), especially in the pediatric age group, but the putative role of a constitutional impaired skin barrier in persons with TD1 is unclear. This study examined the skin barrier function by the measurement of natural moisturizing factor and free cytokines collected through skin tape strips, as well as biophysical markers and the skin microbiome, in persons with TD1 than to age- and sex-matched healthy controls. All measurements were done in nonlesional skin. We found that the skin barrier function was similar in children and adolescents with TD1 than to controls but found that the beta-diversity of skin microbiome at the buttock differed between the two groups. We conclude that individuals with TD1 have normal skin barrier function, and that the increased occurrence of contact dermatitis following pump and sensor use is explained by exogenous factors
    corecore