267 research outputs found

    Carbon-ammonia pairs for adsorption refrigeration applications : ice making, air conditioning and heat pumping

    Get PDF
    A thermodynamic cycle model is used to select an optimum adsorbent-refrigerant pair in respect of a chosen figure of merit that could be the cooling production (MJ m(-3)), the heating production (MJ m(-3)) or the coefficient of performance (COP). This model is based mainly on the adsorption equilibrium equations of the adsorbent-refrigerant pair and heat flows. The simulation results of 26 various activated carbon-ammonia pairs for three cycles (single bed, two-bed and infinite number of beds) are presented at typical conditions for ice making, air conditioning and heat pumping applications. The driving temperature varies from 80 degrees C to 200 degrees C. The carbon absorbents investigated are mainly coconut shell and coal based types in multiple forms: monolithic, granular, compacted granular, fibre, compacted fibre, cloth, compacted cloth and powder. Considering a two-bed cycle, the best thermal performances based on power density are obtained with the monolithic carbon KOH-AC, with a driving temperature of 100 degrees C; the cooling production is about 66 MJ m(-3) (COP = 0.45) and 151 MJ m(-3) (COP = 0.61) for ice making and air conditioning respectively; the heating production is about 236 MJ m(-3) (COP = 1.50)

    Investigating the traffic-related environmental impacts of hydraulic-fracturing (fracking) operations

    Get PDF
    Hydraulic fracturing (fracking) has been used extensively in the US and Canada since the 1950s and offers the potential for significant new sources of oil and gas supply. Numerous other countries around the world (including the UK, Germany, China, South Africa, Australia and Argentina) are now giving serious consideration to sanctioning the technique to provide additional security over the future supply of domestic energy. However, relatively high population densities in many countries and the potential negative environmental impacts that may be associated with fracking operations has stimulated controversy and significant public debate regarding if and where fracking should be permitted. Road traffic generated by fracking operations is one possible source of environmental impact whose significance has, until now, been largely neglected in the available literature. This paper therefore presents a scoping-level environmental assessment for individual and groups of fracking sites using a newly-created Traffic Impacts Model (TIM). The model produces estimates of the traffic-related impacts of fracking on greenhouse gas emissions, local air quality emissions, noise and road pavement wear, using a range of hypothetical fracking scenarios to quantify changes in impacts against baseline levels. Results suggest that the local impacts of a single well pad may be short duration but large magnitude. That is, whilst single digit percentile increases in emissions of CO2, NOx and PM are estimated for the period from start of construction to pad completion (potentially several months or years), excess emissions of NOx on individual days of peak activity can reach 30% over baseline. Likewise, excess noise emissions appear negligible (< 1 dBA) when normalised over the completion period, but may be considerable (+ 3.4 dBA) in particular hours, especially in night-time periods. Larger, regional scale modelling of pad development scenarios over a multi-decade time horizon give modest CO2 emissions that vary between 2.5 and 160.4 kT, dependent on the number of wells, and individual well fracking water and flowback waste requirements. The TIM model is designed to be adaptable to any geographic area where the required input data are available (such as fleet characteristics, road type and quality), and we suggest could be deployed as a tool to help reach more informed decisions regarding where and how fracking might take place taking into account the likely scale of traffic-related environmental impacts

    Accelerated aging: A marker for social factors resulting in cardiovascular events?

    Get PDF
    Background: Medicine and public health are shifting away from a purely personal responsibility model of cardiovascular disease (CVD) prevention towards a societal view targeting social and environmental conditions and how these result in disease. Given the strong association between social conditions and CVD outcomes, we hypothesize that accelerated aging, measuring earlier health decline associated with chronological aging through a combination of biomarkers, may be a marker for the association between social conditions and CVD. Methods: We used data from the Coronary Artery Risk Development in Young Adults study (CARDIA). Accelerated aging was defined as the difference between biological and chronological age. Biological age was derived as a combination of 7 biomarkers (total cholesterol, HDL, glucose, BMI, CRP, FEV1/h(2), MAP), representing the physiological effect of wear and tear usually associated with chronological aging. We studied accelerated aging measured in 2005-06 as a mediator of the association between social factors measured in 2000-01 and 1) any incident CVD event; 2) stroke; and 3) all-cause mortality occurring from 2007 through 18. Results: Among 2978 middle-aged participants, mean (SD) accelerated aging was 3.6 (11.6) years, i.e., the CARDIA cohort appeared to be, on average, 3 years older than its chronological age. Accelerated aging partially mediated the association between social factors and CVD (N=219), stroke (N=36), and mortality (N=59). Accelerated aging mediated 41% of the total effects of racial discrimination on stroke after adjustment for covariates. Accelerated aging also mediated other relationships but to lesser degrees. Conclusion: We provide new evidence that accelerated aging based on easily measurable biomarkers may be a viable marker to partially explain how social factors can lead to cardiovascular outcomes and death

    Genetic Tests for Ecological and Allopatric Speciation in Anoles on an Island Archipelago

    Get PDF
    From Darwin's study of the Galapagos and Wallace's study of Indonesia, islands have played an important role in evolutionary investigations, and radiations within archipelagos are readily interpreted as supporting the conventional view of allopatric speciation. Even during the ongoing paradigm shift towards other modes of speciation, island radiations, such as the Lesser Antillean anoles, are thought to exemplify this process. Geological and molecular phylogenetic evidence show that, in this archipelago, Martinique anoles provide several examples of secondary contact of island species. Four precursor island species, with up to 8 mybp divergence, met when their islands coalesced to form the current island of Martinique. Moreover, adjacent anole populations also show marked adaptation to distinct habitat zonation, allowing both allopatric and ecological speciation to be tested in this system. We take advantage of this opportunity of replicated island coalescence and independent ecological adaptation to carry out an extensive population genetic study of hypervariable neutral nuclear markers to show that even after these very substantial periods of spatial isolation these putative allospecies show less reproductive isolation than conspecific populations in adjacent habitats in all three cases of subsequent island coalescence. The degree of genetic interchange shows that while there is always a significant genetic signature of past allopatry, and this may be quite strong if the selection regime allows, there is no case of complete allopatric speciation, in spite of the strong primae facie case for it. Importantly there is greater genetic isolation across the xeric/rainforest ecotone than is associated with any secondary contact. This rejects the development of reproductive isolation in allopatric divergence, but supports the potential for ecological speciation, even though full speciation has not been achieved in this case. It also explains the paucity of anole species in the Lesser Antilles compared to the Greater Antilles

    A forensic STR profiling system for the Eurasian badger: A framework for developing profiling systems for wildlife species. Forensic Sci

    Get PDF
    Abstract Developing short tandem repeat (STR) profiling systems for forensic identification is complicated in animal species. Obtaining a representative number of individuals from populations, limited access to family groups and a lack of developed STR markers can make adhering to human forensic guidelines difficult. Furthermore, a lack of animal specific guidelines may explain why many wildlife forensic STR profiling systems developed to date have not appropriately addressed areas such as marker validation or the publication and analysis of population data necessary for the application of these tools to forensic science. Here we present a methodology used to develop an STR profiling system for a legally protected wildlife species, the Eurasian badger Meles meles. Ten previously isolated STR loci were selected based on their level of polymorphism, adherence to Hardy-Weinberg expectations and their fragment size. Each locus was individually validated with respect to its reproducibility, inheritance, species specificity, DNA template concentration and thermocycling parameters. The effects of chemical, substrate and environmental exposure were also investigated. All ten STR loci provided reliable and reproducible results, and optimal amplification conditions were defined. Allele frequencies from 20 representative populations in England and Wales are presented and used to calculate the level of population substructure (u) and inbreeding ( f). Accounting for these estimates, the average probability of identity (PI ave ) was 2.18 Â 10 À7 . This case study can act as a framework for others attempting to develop wildlife forensic profiling systems.

    Genetic and ecological correlates of intraspecific variation in pitviper venom composition detected using matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and isoelectric

    Get PDF
    Abstract. The ability to detect biochemical diversity in animal venoms has wide-ranging implications for a diverse array of scientific disciplines. Matrix-assisted laser desorption time-of-flight mass spectrometry (and, for comparative purposes, isoelectric focusing) were used to characterize venoms from a geographically diverse sample of Trimeresurus stejnegeri (n&lt;229) from Taiwan. Previously unrealised levels of heterogeneity were detected in venom phospholipase A 2 isoforms (PLA 2 ) and in whole venom profiles. Geographic variation in venom was primarily between Taiwan and two Pacific islets. Despite the common assumption that venom variation is a product of neutral molecular evolution, statistical testing failed to link venom variation with phylogenetic descent convincingly. Instead, pronounced differences in venom composition may be the product of natural selection for regional diets or of independent founder effects. More data are required on the functional differences between the isoforms to distinguish between these alternatives
    • …
    corecore