13 research outputs found

    Stable carbon isotope reconstruction of ungulate diet changes through the seasonal cycle

    Full text link
    We analysed stable carbon isotope ratios (13C) in faeces of 11 African ungulate species from three South African savanna environments to determine whether this approach is sufficiently sensitive to record short-term seasonal diet changes in browsers (BR), mixed-feeders (IM), and grazers (GR). At monthly intervals, faecal 13C revealed variations in proportions of C3 (browse) to C4 (grass) biomass consumed that were not detected by broader dry versus wet season comparisons, including subtle diet shifts amongst BR and GR. However, trends in faeces were influenced by changes in C3 and C4 plant isotope composition of up to 3‰. Nonetheless, faeces and plants showed strongly similar patterns of variation through the seasonal cycle, so that small diet shifts can be reliably inferred, provided that the variations in plants are controlled for. Faecal 13C of BR may be further influenced by consumption of isotopically different plant parts such as foliage versus fruit and flowers, and GR faeces may reflect differential utilization of grass following different photosynthetic sub-pathways. Future studies will need to incorporate data that capture isotopic variations in herbivore food sources, and if this is achieved, the approach may well become adopted as a routine addition to traditional methods for assessing diet, habitat use, and habitat condition

    Significance of diet type and diet quality for ecological diversity of African ungulates

    Full text link
    1.We test two nutritional hypotheses for the ecological diversity of ungulates, the browser/grazer (diet type) and diet quality models, among free-ranging herbivores in a South African savanna, the Kruger National Park. Tests are based on assessment of relationships between diet type and diet quality with body mass and hypsodonty, two morphological features that have been associated with both elements. 2.We use stable carbon isotope ratios of faeces to reconstruct diet in terms of proportions of C3 plants (browse) and C4 plants (grass) consumed by different species in different seasons. These data are combined with proxies for diet quality (per cent nitrogen, neutral detergent fibre, acid detergent fibre, and acid detergent lignin) from faeces to track changes in diet quality. 3.Two statistical approaches are used in model selection, i.e. tests of significant correlations based on linear regression analyses, and an information-theory approach (Akaike’s Information Criterion) providing insight into strength of evidence for models. 4.Results of both methods show that, contrary to many predictions, body mass and diet type are not related, but these data confirm predictions that diet quality decreases with increasing body size, especially during the dry season. Hypsodonty, as expected, varies with diet type, increasing with increased grass intake. 5.These findings support both a diet type and diet quality model, implying some degree of exclusivity. We propose that congruence between models may be achieved through addition of diet quality proxies not included here, because hypsodonty is more likely a reflection of the abrasive properties of consumed foods, i.e. related to food quality, rather than food type. This implies that adaptation to diets of varying quality, through changes in body size and dental features, has been the primary mechanism for diversification in ungulates. 6. Our interpretation contrasts with several recent studies advocating diet type as the primary factor, exemplifying that further reconciliation between the two models is needed. We discuss the implications of this study for future approaches to achieve a more cohesive understanding of the evolutionary outcomes of herbivore nutrition

    Stable isotope turnover and variability in tail hairs of captive and free-ranging African elephants (Loxodonta africana) reveal dietary niche differences within populations

    Full text link
    Many herbivore species expand their dietary niche breadths by switching from browse-rich diets in dry seasons to grass-rich diets in rainy seasons, in response to phenological changes in plant availability and quality.Weanalyzed stable isotope series along tail hairs of captive and free-ranging African elephant (Loxodonta africana (Blumenbach, 1797)) to compare patterns of seasonal dietary variability across individuals. Results from elephants translocated from the wild into captivity, where their diets are semicontrolled, revealed tail hair growth rates of �0.34 mm/day, on average, and relatively rapid isotope turnover through the transition from wild into captivity. Sampling hairs at 10 mm increments thus archives dietary chronologies at a resolution suitable for tracking diet switches at seasonal, and even subseasonal, scales. Hairs of free-ranging elephants showed extensive carbon isotopic variability within individuals, consistent with seasonal switches between C3-browsing and C4-grazing. Similarly extensive, but asynchronous, shifts in nitrogen isotope ratios were also observed, suggesting an influence of factors other than seasonality. Across individuals, switching patterns differed across habitats, and across age classes, with older, larger animals including increasing amounts of C3 browse into their diets. These results demonstrate how stable isotope approaches characterize complex patterns of resource use in wildlife populations

    Diets of savanna ungulates from stable carbon isotope composition of faeces

    Full text link
    Hypotheses to explain diversity among African ungulates focus largely on niche separation along a browser/grazer continuum. However, a number of studies advocate that the browser/grazer distinction insufficiently describes the full extent of dietary variation that occurs within and between taxa. Disparate classification schemes exist because of a lack of uniform and reliable data for many taxa, and failure to incorporate spatio-temporal variations into broader assessments of diet. In this study, we tested predictions for diet and dietary niche separation of African savanna ungulates using stable carbon isotope evidence from faeces for proportions of C3 (browse) to C4 (grass) intake among 19 species from the Kruger National Park, South Africa. Dietary predictions from the literature are confirmed in the case of browsers (black rhinoceros Diceros bicornis, giraffe Giraffa camelopardalis, bushbuck Tragelaphus scriptus, kudu Tragelaphus strepsiceros), mixed-feeders (impala Aepyceros melampus, nyala Tragelaphus angasii), and most grazers (white rhinoceros Ceratotherium simum, Burchell’s zebra Equus burchellii, warthog Phacochoerus africanus, hippopotamus Hippopotamus amphibius, blue wildebeest Connochaetes taurinus, tsessebe Damaliscus lunatus, waterbuck Kobus ellipsiprymnus). In contrast, several species showed results differing from most expectations derived from the available literature, including eland Taurotragus oryx, steenbok Raphicerus campestris, grey duiker Sylvicapra grimmia, buffalo Syncerus caffer, roan antelope Hippotragus equinus and sable antelope Hippotragus niger. Many of these discrepancies can be accounted for by seasonal and/or regional dietary differences. Cluster analysis based on a data matrix that incorporates the extent of spatio-temporal dietary variation among Kruger Park ungulates reveals several distinct categories of feeding preferences that extend beyond a two-edged browser/grazer dichotomy, such as mixed-feeders with a preference for either forage class, and spatial/seasonal shifts between uniform and mixed-feeding styles among variable browsers (e.g. grey duiker) and variable grazers (e.g. buffalo). These results highlight the need for approaches that are sensitive to spatio-temporal variations and the continuity of diet

    Intoxicação experimental por cebola, Allium cepa (Liliaceae), em gatos Experimental onion Allium cepa (Liliaceae) poisoning in cats

    No full text
    A intoxicação por cebola é relatada em várias espécies animais em muitas partes do mundo. O princípio tóxico (n-propil dissulfito) presente na cebola causa a transformação da hemoglobina em metemoglobina. Para estudar os achados laboratoriais, de necropsia e histopatológicos da intoxicação por cebola em gatos, cinco gatos de quatro meses de idade receberam cada um uma dose única de 10g/kg de cebola desidratada por via oral. Um outro gato de mesma idade não recebeu a refeição com cebola e serviu como controle. Todos os cinco gatos desenvolveram sinais clínicos da toxicose; um deles morreu dentro de 24 horas após a ingestão da cebola. Os sinais clínicos incluíram apatia, taquicardia, taquipnéia e cianose. Os achados laboratoriais se caracterizavam por anemia hemolítica associada a corpúsculos de Heinz e metemoglobinemia. Os principais achados de necropsia foram esplenomegalia e sangue de cor marrom. Os achados histopatológicos foram hemossiderose e hematopoese extramedular no baço e fígado.<br>Onion poisoning is reported worlwide in several animal species. The toxic principle (n-propyl dissulfide) present in onions causes the transformation of hemoglobin in methemoglobin. In order to study the laboratory, gross and histopathological findings in onion poisoning in cats, five 4-month-old cats were fed a single dose of 10g/kg of dried-onion each. Another cat of the same age did not receive the onion meal and served as control. All five cats developed clinical signs of the toxicosis; one of them died within 24 hours of the ingestion of the onion meal. Clinical signs included apathy, tachycardia, tachypnea, and cyanosis. Laboratory findings included hemolytic anemia associated with Heinz bodies and methemoglobinemia. Main necropsy findings were splenomegaly and brown discoloration of blood. Histopathological findings included splenic and hepatic hemosiderosis and multifocal extramedullary hematopoiesis
    corecore