1,117 research outputs found

    Technical challenges and safety of magnetic resonance imaging with in situ neuromodulation from spine to brain

    Get PDF
    PURPOSE: This review summarises the need for MRI with in situ neuromodulation, the key safety challenges and how they may be mitigated, and surveys the current status of MRI safety for the main categories of neuro-stimulation device, including deep brain stimulation, vagus nerve stimulation, sacral neuromodulation, spinal cord stimulation systems, and cochlear implants. REVIEW SUMMARY: When neuro-stimulator systems are introduced into the MRI environment a number of hazards arise with potential for patient harm, in particular the risk of thermal injury due to MRI-induced heating. For many devices however, safe MRI conditions can be determined, and MRI safely performed, albeit with possible compromise in anatomical coverage, image quality or extended acquisition time. CONCLUSIONS: The increasing availability of devices conditional for 3 T MRI, whole-body transmit imaging, and imaging in the on-stimulation condition, will be of significant benefit to the growing population of patients benefitting from neuromodulation therapy, and open up new opportunities for functional imaging research

    MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study

    Get PDF
    BACKGROUND: A substantial impediment to progress in trials of new therapies in neuromuscular disorders is the absence of responsive outcome measures that correlate with patient functional deficits and are sensitive to early disease processes. Irrespective of the primary molecular defect, neuromuscular disorder pathological processes include disturbance of intramuscular water distribution followed by intramuscular fat accumulation, both quantifiable by MRI. In pathologically distinct neuromuscular disorders, we aimed to determine the comparative responsiveness of MRI outcome measures over 1 year, the validity of MRI outcome measures by cross-sectional correlation against functionally relevant clinical measures, and the sensitivity of specific MRI indices to early muscle water changes before intramuscular fat accumulation beyond the healthy control range. METHODS: We did a prospective observational cohort study of patients with either Charcot-Marie-Tooth disease 1A or inclusion body myositis who were attending the inherited neuropathy or muscle clinics at the Medical Research Council (MRC) Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK. Genetic confirmation of the chromosome 17p11·2 duplication was required for Charcot-Marie-Tooth disease 1A, and classification as pathologically or clinically definite by MRC criteria was required for inclusion body myositis. Exclusion criteria were concomitant diseases and safety-related MRI contraindications. Healthy age-matched and sex-matched controls were also recruited. Assessments were done at baseline and 1 year. The MRI outcomes-fat fraction, transverse relaxation time (T2), and magnetisation transfer ratio (MTR)-were analysed during the 12-month follow-up, by measuring correlation with functionally relevant clinical measures, and for T2 and MTR, sensitivity in muscles with fat fraction less than the 95th percentile of the control group. FINDINGS: Between Jan 19, 2010, and July 7, 2011, we recruited 20 patients with Charcot-Marie-Tooth disease 1A, 20 patients with inclusion body myositis, and 29 healthy controls (allocated to one or both of the 20-participant matched-control subgroups). Whole muscle fat fraction increased significantly during the 12-month follow-up at calf level (mean absolute change 1·2%, 95% CI 0·5-1·9, p=0·002) but not thigh level (0·2%, -0·2 to 0·6, p=0·38) in patients with Charcot-Marie-Tooth disease 1A, and at calf level (2·6%, 1·3-4·0, p=0·002) and thigh level (3·3%, 1·8-4·9, p=0·0007) in patients with inclusion body myositis. Fat fraction correlated with the lower limb components of the inclusion body myositis functional rating score (ρ=-0·64, p=0·002) and the Charcot-Marie-Tooth examination score (ρ=0·63, p=0·003). Longitudinal T2 and MTR changed consistently with fat fraction but more variably. In muscles with a fat fraction lower than the control group 95th percentile, T2 was increased in patients compared with controls (regression coefficients: inclusion body myositis thigh 4·0 ms [SE 0·5], calf 3·5 ms [0·6]; Charcot-Marie-Tooth 1A thigh 1·0 ms [0·3], calf 2·0 ms [0·3]) and MTR reduced compared with controls (inclusion body myositis thigh -1·5 percentage units [pu; 0·2], calf -1·1 pu [0·2]; Charcot-Marie-Tooth 1A thigh -0·3 pu [0·1], calf -0·7 pu [0·1]). INTERPRETATION: MRI outcome measures can monitor intramuscular fat accumulation with high responsiveness, show validity by correlation with conventional functional measures, and detect muscle water changes preceding marked intramuscular fat accumulation. Confirmation of our results in further cohorts with these and other muscle-wasting disorders would suggest that MRI biomarkers might prove valuable in experimental trials. FUNDING: Medical Research Council UK

    Bilateral Weighted Adaptive Local Similarity Measure for Registration in Neurosurgery

    Get PDF
    Image-guided neurosurgery involves the display of MRI-based preoperative plans in an intraoperative reference frame. Interventional MRI (iMRI) can serve as a reference for non-rigid registration based propagation of preoperative MRI. Structural MRI images exhibit spatially varying intensity relationships, which can be captured by a local similarity measure such as the local normalized correlation coefficient (LNCC). However, LNCC weights local neighborhoods using a static spatial kernel and includes voxels from beyond a tissue or resection boundary in a neighborhood centered inside the boundary. We modify LNCC to use locally adaptive weighting inspired by bilateral filtering and evaluate it extensively in a numerical phantom study, a clinical iMRI study and a segmentation propagation study. The modified measure enables increased registration accuracy near tissue and resection boundaries

    Stability and sensitivity of water T2 obtained with IDEAL-CPMG in healthy and fat-infiltrated skeletal muscle

    Get PDF
    Quantifying muscle water T2 (T2 -water) independently of intramuscular fat content is essential in establishing T2 -water as an outcome measure for imminent new therapy trials in neuromuscular diseases. IDEAL-CPMG combines chemical shift fat-water separation with T2 relaxometry to obtain such a measure. Here we evaluate the reproducibility and B1 sensitivity of IDEAL-CPMG T2 -water and fat fraction (f.f.) values in healthy subjects, and demonstrate the potential of the method to quantify T2 -water variation in diseased muscle displaying varying degrees of fatty infiltration. The calf muscles of 11 healthy individuals (40.5 ± 10.2 years) were scanned twice at 3 T with an inter-scan interval of 4 weeks using IDEAL-CPMG, and 12 patients with hypokalemic periodic paralysis (HypoPP) (42.3 ± 11.5 years) were also imaged. An exponential was fitted to the signal decay of the separated water and fat components to determine T2 -water and the fat signal amplitude muscle regions manually segmented. Overall mean calf-level muscle T2 -water in healthy subjects was 31.2 ± 2.0 ms, without significant inter-muscle differences (p = 0.37). Inter-subject and inter-scan coefficients of variation were 5.7% and 3.2% respectively for T2 -water and 41.1% and 15.4% for f.f. Bland-Altman mean bias and ±95% coefficients of repeatability were for T2 -water (0.15, -2.65, 2.95) ms and f.f. (-0.02, -1.99, 2.03)%. There was no relationship between T2 -water (ρ = 0.16, p = 0.07) or f.f. (ρ = 0.03, p = 0.7761) and B1 error or any correlation between T2 -water and f.f. in the healthy subjects (ρ = 0.07, p = 0.40). In HypoPP there was a measurable relationship between T2 -water and f.f. (ρ = 0.59, p < 0.001). IDEAL-CPMG provides a feasible way to quantify T2 -water in muscle that is reproducible and sensitive to meaningful physiological changes without post hoc modeling of the fat contribution. In patients, IDEAL-CPMG measured elevations in T2 -water and f.f. while showing a weak relationship between these parameters, thus showing promise as a practical means of quantifying muscle water in patient populations

    Epileptic networks in focal cortical dysplasia revealed using electroencephalography-functional magnetic resonance imaging.

    Get PDF
    Surgical treatment of focal epilepsy in patients with focal cortical dysplasia (FCD) is most successful if all epileptogenic tissue is resected. This may not be evident on structural magnetic resonance imaging (MRI), so intracranial electroencephalography (icEEG) is needed to delineate the seizure onset zone (SOZ). EEG-functional MRI (fMRI) can reveal interictal discharge (IED)-related hemodynamic changes in the irritative zone (IZ). We assessed the value of EEG-fMRI in patients with FCD-associated focal epilepsy by examining the relationship between IED-related hemodynamic changes, icEEG findings, and postoperative outcome

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state

    Magnetic resonance imaging evidence for presymptomatic change in thalamus and caudate in familial Alzheimer’s disease

    Get PDF
    Amyloid imaging studies of presymptomatic familial Alzheimer’s disease have revealed the striatum and thalamus to be the earliest sites of amyloid deposition. This study aimed to investigate whether there are associated volume and diffusivity changes in these subcortical structures during the presymptomatic and symptomatic stages of familial Alzheimer’s disease. As the thalamus and striatum are involved in neural networks subserving complex cognitive and behavioural functions, we also examined the diffusion characteristics in connecting white matter tracts. A cohort of 20 presenilin 1 mutation carriers underwent volumetric and diffusion tensor magnetic resonance imaging, neuropsychological and clinical assessments; 10 were symptomatic, 10 were presymptomatic and on average 5.6 years younger than their expected age at onset; 20 healthy control subjects were also studied. We conducted region of interest analyses of volume and diffusivity changes in the thalamus, caudate, putamen and hippocampus and examined diffusion behaviour in the white matter tracts of interest (fornix, cingulum and corpus callosum). Voxel-based morphometry and tract-based spatial statistics were also used to provide unbiased whole-brain analyses of group differences in volume and diffusion indices, respectively. We found that reduced volumes of the left thalamus and bilateral caudate were evident at a presymptomatic stage, together with increased fractional anisotropy of bilateral thalamus and left caudate. Although no significant hippocampal volume loss was evident presymptomatically, reduced mean diffusivity was observed in the right hippocampus and reduced mean and axial diffusivity in the right cingulum. In contrast, symptomatic mutation carriers showed increased mean, axial and in particular radial diffusivity, with reduced fractional anisotropy, in all of the white matter tracts of interest. The symptomatic group also showed atrophy and increased mean diffusivity in all of the subcortical grey matter regions of interest, with increased fractional anisotropy in bilateral putamen. We propose that axonal injury may be an early event in presymptomatic Alzheimer’s disease, causing an initial fall in axial and mean diffusivity, which then increases with loss of axonal density. The selective degeneration of long-coursing white matter tracts, with relative preservation of short interneurons, may account for the increase in fractional anisotropy that is seen in the thalamus and caudate presymptomatically. It may be owing to their dense connectivity that imaging changes are seen first in the thalamus and striatum, which then progress to involve other regions in a vulnerable neuronal network

    Modulation of emotional appraisal by false physiological feedback during fMRI

    Get PDF
    BACKGROUND James and Lange proposed that emotions are the perception of physiological reactions. Two-level theories of emotion extend this model to suggest that cognitive interpretations of physiological changes shape self-reported emotions. Correspondingly false physiological feedback of evoked or tonic bodily responses can alter emotional attributions. Moreover, anxiety states are proposed to arise from detection of mismatch between actual and anticipated states of physiological arousal. However, the neural underpinnings of these phenomena previously have not been examined. METHODOLOGY/PRINCIPAL FINDINGS We undertook a functional brain imaging (fMRI) experiment to investigate how both primary and second-order levels of physiological (viscerosensory) representation impact on the processing of external emotional cues. 12 participants were scanned while judging face stimuli during both exercise and non-exercise conditions in the context of true and false auditory feedback of tonic heart rate. We observed that the perceived emotional intensity/salience of neutral faces was enhanced by false feedback of increased heart rate. Regional changes in neural activity corresponding to this behavioural interaction were observed within included right anterior insula, bilateral mid insula, and amygdala. In addition, right anterior insula activity was enhanced during by asynchronous relative to synchronous cardiac feedback even with no change in perceived or actual heart rate suggesting this region serves as a comparator to detect physiological mismatches. Finally, BOLD activity within right anterior insula and amygdala predicted the corresponding changes in perceived intensity ratings at both a group and an individual level. CONCLUSIONS/SIGNIFICANCE Our findings identify the neural substrates supporting behavioural effects of false physiological feedback, and highlight mechanisms that underlie subjective anxiety states, including the importance of the right anterior insula in guiding second-order "cognitive" representations of bodily arousal state

    Therapeutic subthalamic nucleus deep brain stimulation reverses cortico-thalamic coupling during voluntary movements in Parkinson's disease.

    Get PDF
    Deep brain stimulation of the subthalamic nucleus (STN DBS) has become an accepted treatment for patients experiencing the motor complications of Parkinson's disease (PD). While its successes are becoming increasingly apparent, the mechanisms underlying its action remain unclear. Multiple studies using radiotracer-based imaging have investigated DBS-induced regional changes in neural activity. However, little is known about the effect of DBS on connectivity within neural networks; in other words, whether DBS impacts upon functional integration of specialized regions of cortex. In this work, we report the first findings of fMRI in 10 subjects with PD and fully implanted DBS hardware receiving efficacious stimulation. Despite the technical demands associated with the safe acquisition of fMRI data from patients with implanted hardware, robust activation changes were identified in the insula cortex and thalamus in response to therapeutic STN DBS. We then quantified the neuromodulatory effects of DBS and compared sixteen dynamic causal models of effective connectivity between the two identified nodes. Using Bayesian model comparison, we found unequivocal evidence for the modulation of extrinsic (between region), i.e. cortico-thalamic and thalamo-cortical connections. Using Bayesian model parameter averaging we found that during voluntary movements, DBS reversed the effective connectivity between regions of the cortex and thalamus. This casts the therapeutic effects of DBS in a fundamentally new light, emphasising a role in changing distributed cortico-subcortical interactions. We conclude that STN DBS does impact upon the effective connectivity between the cortex and thalamus by changing their sensitivities to extrinsic afferents. Furthermore, we confirm that fMRI is both feasible and is tolerated well by these patients provided strict safety measures are adhered to

    ApoE influences regional white-matter axonal density loss in Alzheimer's disease

    Get PDF
    Mechanisms underlying phenotypic heterogeneity in young onset Alzheimer disease (YOAD) are poorly understood. We used diffusion tensor imaging and neurite orientation dispersion and density imaging (NODDI) with tract-based spatial statistics to investigate apolipoprotein (APOE) ε4 modulation of white-matter damage in 37 patients with YOAD (22, 59% APOE ε4 positive) and 23 age-matched controls. Correlation between neurite density index (NDI) and neuropsychological performance was assessed in 4 white-matter regions of interest. White-matter disruption was more widespread in ε4+ individuals but more focal (posterior predominant) in the absence of an ε4 allele. NODDI metrics indicate fractional anisotropy changes are underpinned by combinations of axonal loss and morphological change. Regional NDI in parieto-occipital white matter correlated with visual object and spatial perception battery performance (right and left, both p = 0.02), and performance (nonverbal) intelligence (WASI matrices, right, p = 0.04). NODDI provides tissue-specific microstructural metrics of white-matter tract damage in YOAD, including NDI which correlates with focal cognitive deficits, and APOEε4 status is associated with different patterns of white-matter neurodegeneration
    corecore