6,802 research outputs found

    Universal properties of the near-horizon optical geometry

    Full text link
    We make use of the fact that the optical geometry near a static non-degenerate Killing horizon is asymptotically hyperbolic to investigate universal features of black hole physics. We show how the Gauss-Bonnet theorem allows certain lensing scenarios to be ruled in or out. We find rates for the loss of scalar, vector and fermionic `hair' as objects fall quasi- statically towards the horizon. In the process we find the Lienard-Wiechert potential for hyperbolic space and calculate the force between electrons mediated by neutrinos, extending the flat space result of Feinberg and Sucher. We use the enhanced conformal symmetry of the Schwarzschild and Reissner-Nordstrom backgrounds to re-derive the electrostatic field due to a point charge in a simple fashion

    Evolution of a Self-interacting Scalar Field in the spacetime of a Higher Dimensional Black Hole

    Full text link
    In the spacetime of n-dimensional static charged black hole we examine the mechanism by which the self-interacting scalar hair decay. It is turned out that the intermediate asymptotic behaviour of the self-interacting scalar field is determined by an oscilatory inverse power law. We confirm our results by numerical calculations.Comment: RevTex, 6 pages, 8 figures, to be published in Phys.Rev.D1

    Source integrals of asymptotic multipole moments

    Full text link
    We derive source integrals for multipole moments that describe the behaviour of static and axially symmetric spacetimes close to spatial infinity. We assume isolated non-singular sources but will not restrict the matter content otherwise. Some future applications of these source integrals of the asymptotic multipole moments are outlined as well.Comment: 9 pages, 1 figure, contribution to the proceedings of the conference "Relativity and Gravitation - 100 Years after Einstein in Prague", June 25-29, 2012, Pragu

    Locality in quantum gravity and string theory

    Full text link
    Breakdown of local physics in string theory at distances longer than the string scale is investigated. Such nonlocality would be expected to be visible in ultrahigh-energy scattering. The results of various approaches to such scattering are collected and examined. No evidence is found for non-locality from strings whose length grows linearly with the energy. However, local quantum field theory does apparently fail at scales determined by gravitational physics, particularly strong gravitational dynamics. This amplifies locality bound arguments that such failure of locality is a fundamental aspect of physics. This kind of nonlocality could be a central element of a possible loophole in the argument for information loss in black holes.Comment: 26 pages, 3 figures, harvmac. v2: minor changes to bring into accord with revised paper hep-th/060519

    Mitochondrial Dna Replacement Versus Nuclear Dna Persistence

    Full text link
    In this paper we consider two populations whose generations are not overlapping and whose size is large. The number of males and females in both populations is constant. Any generation is replaced by a new one and any individual has two parents for what concerns nuclear DNA and a single one (the mother) for what concerns mtDNA. Moreover, at any generation some individuals migrate from the first population to the second. In a finite random time TT, the mtDNA of the second population is completely replaced by the mtDNA of the first. In the same time, the nuclear DNA is not completely replaced and a fraction FF of the ancient nuclear DNA persists. We compute both TT and FF. Since this study shows that complete replacement of mtDNA in a population is compatible with the persistence of a large fraction of nuclear DNA, it may have some relevance for the Out of Africa/Multiregional debate in Paleoanthropology

    Thermal gravity, black holes and cosmological entropy

    Full text link
    Taking seriously the interpretation of black hole entropy as the logarithm of the number of microstates, we argue that thermal gravitons may undergo a phase transition to a kind of black hole condensate. The phase transition proceeds via nucleation of black holes at a rate governed by a saddlepoint configuration whose free energy is of order the inverse temperature in Planck units. Whether the universe remains in a low entropy state as opposed to the high entropy black hole condensate depends sensitively on its thermal history. Our results may clarify an old observation of Penrose regarding the very low entropy state of the universe.Comment: 5 pages, 2 figures, RevTex. v4: to appear in Phys. Rev.

    Dynamical Collapse of Charged Scalar Field in Phantom Gravity

    Full text link
    We investigated the problem of the dynamical collapse of a self-gravitating complex charged scalar field in Einstein-Maxwell-dilaton theory with a phantom copuling for the adequate fields in the system under consideration. We also considered two simplifications of it, i.e., the separate collapses of phantom Maxwell and phantom scalar fields under the influence of Einstein gravity. One starts with the regular spacetime and leads the evolution through the formation of the horizons and the final singularity. We discuss the structures of spacetimes emerging in the process of the dynamical collapse and comment on the role of the considered fields in its course.Comment: 15 pages, RevTex, 18 figures, to be published in Phys.Rev.D1

    Relativistic Radiative Transfer for Spherical Flows

    Full text link
    We present a new complete set of Lagrangian relativistic hydrodynamical equations describing the transfer of energy and momentum between a standard fluid and a radiation fluid in a general non-stationary spherical flow. The new set of equations has been derived for a particular application to the study of the cosmological Quark--Hadron transition but can also be used in other contexts.Comment: 28 pages, 9 postscript figs, Plain Te

    Centrifugally driven electrostatic instability in extragalactic jets

    Full text link
    The stability problem of the rotation induced electrostatic wave in extragalactic jets is presented. Solving a set of equations describing dynamics of a relativistic plasma flow of AGN jets, an expression of the instability rate has been derived and analyzed for typical values of AGNs. The growth rate was studied versus the wave length and the inclination angle and it has been found that the instability process is much efficient with respect to the accretion disk evolution, indicating high efficiency of the instability.Comment: 7 pages, 4 figure

    BFKL at next-to-leading order

    Get PDF
    This is a summary of the contributions on the next-to-leading order corrections to the BFKL equation which were presented to the `Small-x and Diffraction' working group at the 1998 Durham Workshop on HERA Physics.Comment: 6 pages, 2 figure
    • …
    corecore