research

Universal properties of the near-horizon optical geometry

Abstract

We make use of the fact that the optical geometry near a static non-degenerate Killing horizon is asymptotically hyperbolic to investigate universal features of black hole physics. We show how the Gauss-Bonnet theorem allows certain lensing scenarios to be ruled in or out. We find rates for the loss of scalar, vector and fermionic `hair' as objects fall quasi- statically towards the horizon. In the process we find the Lienard-Wiechert potential for hyperbolic space and calculate the force between electrons mediated by neutrinos, extending the flat space result of Feinberg and Sucher. We use the enhanced conformal symmetry of the Schwarzschild and Reissner-Nordstrom backgrounds to re-derive the electrostatic field due to a point charge in a simple fashion

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020