7,956 research outputs found
Parton Distributions
I discuss our current understanding of parton distributions. I begin with the
underlying theoretical framework, and the way in which different data sets
constrain different partons, highlighting recent developments. The methods of
examining the uncertainties on the distributions and those physical quantities
dependent on them is analysed. Finally I look at the evidence that additional
theoretical corrections beyond NLO perturbative QCD may be necessary, what type
of corrections are indicated and the impact these may have on the
uncertainties.Comment: Invited talk at "XXI International Symposium on Lepton and Photon
Interactions at High Energies," (Fermilab, Chicago, August 2003). 12 pages,
21 figure
Complex Wave Numbers in the Vicinity of the Schwarzschild Event Horizon
This paper is devoted to investigate the cold plasma wave properties outside
the event horizon of the Schwarzschild planar analogue. The dispersion
relations are obtained from the corresponding Fourier analyzed equations for
non-rotating and rotating, non-magnetized and magnetized backgrounds. These
dispersion relations provide complex wave numbers. The wave numbers are shown
in graphs to discuss the nature and behavior of waves and the properties of
plasma lying in the vicinity of the Schwarzschild event horizon.Comment: 21 pages, 9 figures, accepted for publication Int. J. Mod. Phys.
Universal properties of the near-horizon optical geometry
We make use of the fact that the optical geometry near a static
non-degenerate Killing horizon is asymptotically hyperbolic to investigate
universal features of black hole physics. We show how the Gauss-Bonnet theorem
allows certain lensing scenarios to be ruled in or out. We find rates for the
loss of scalar, vector and fermionic `hair' as objects fall quasi- statically
towards the horizon. In the process we find the Lienard-Wiechert potential for
hyperbolic space and calculate the force between electrons mediated by
neutrinos, extending the flat space result of Feinberg and Sucher. We use the
enhanced conformal symmetry of the Schwarzschild and Reissner-Nordstrom
backgrounds to re-derive the electrostatic field due to a point charge in a
simple fashion
Waveless Approximation Theories of Gravity
The analysis of a general multibody physical system governed by Einstein's
equations in quite difficult, even if numerical methods (on a computer) are
used. Some of the difficulties -- many coupled degrees of freedom, dynamic
instability -- are associated with the presence of gravitational waves. We have
developed a number of ``waveless approximation theories'' (WAT) which repress
the gravitational radiation and thereby simplify the analysis. The matter,
according to these theories, evolves dynamically. The gravitational field,
however, is determined at each time step by a set of elliptic equations with
matter sources. There is reason to believe that for many physical systems, the
WAT-generated system evolution is a very accurate approximation to that
generated by the full Einstein theory
Relativistic Stellar Pulsations With Near-Zone Boundary Conditions
A new method is presented here for evaluating approximately the pulsation
modes of relativistic stellar models. This approximation relies on the fact
that gravitational radiation influences these modes only on timescales that are
much longer than the basic hydrodynamic timescale of the system. This makes it
possible to impose the boundary conditions on the gravitational potentials at
the surface of the star rather than in the asymptotic wave zone of the
gravitational field. This approximation is tested here by predicting the
frequencies of the outgoing non-radial hydrodynamic modes of non-rotating
stars. The real parts of the frequencies are determined with an accuracy that
is better than our knowledge of the exact frequencies (about 0.01%) except in
the most relativistic models where it decreases to about 0.1%. The imaginary
parts of the frequencies are determined with an accuracy of approximately M/R,
where M is the mass and R is the radius of the star in question.Comment: 10 pages (REVTeX 3.1), 5 figs., 1 table, fixed minor typos, published
in Phys. Rev. D 56, 2118 (1997
Relativistic Radiative Transfer for Spherical Flows
We present a new complete set of Lagrangian relativistic hydrodynamical
equations describing the transfer of energy and momentum between a standard
fluid and a radiation fluid in a general non-stationary spherical flow. The new
set of equations has been derived for a particular application to the study of
the cosmological Quark--Hadron transition but can also be used in other
contexts.Comment: 28 pages, 9 postscript figs, Plain Te
Nonlinear dynamics, rectification, and phase locking for particles on symmetrical two-dimensional periodic substrates with dc and circular ac drives
We investigate the dynamical motion of particles on a two-dimensional
symmetric periodic substrate in the presence of both a dc drive along a
symmetry direction of the periodic substrate and an additional circular ac
drive. For large enough ac drives, the particle orbit encircles one or more
potential maxima of the periodic substrate. In this case, when an additional
increasing dc drive is applied in the longitudinal direction, the longitudinal
velocity increases in a series of discrete steps that are integer multiples of
the lattice constant of the substrate times the frequency. Fractional steps can
also occur. These integer and fractional steps correspond to distinct stable
dynamical orbits. A number of these phases also show a rectification in the
positive or negative transverse direction where a non-zero transverse velocity
occurs in the absence of a dc transverse drive. We map out the phase diagrams
of the regions of rectification as a function of ac amplitude, and find a
series of tongues. Most of the features, including the steps in the
longitudinal velocity and the transverse rectification, can be captured with a
simple toy model and by arguments from nonlinear maps. We have also
investigated the effects of thermal disorder and incommensuration on the
rectification phenomena, and find that for increasing disorder, the
rectification regions are gradually smeared and the longitudinal velocity steps
are no longer flat but show a linearly increasing velocity.Comment: 14 pages, 17 postscript figure
High Resolution Ionization of Ultracold Neutral Plasmas
Collective effects, such as waves and instabilities, are integral to our
understanding of most plasma phenomena. We have been able to study these in
ultracold neutral plasmas by shaping the initial density distribution through
spatial modulation of the ionizing laser intensity. We describe a relay imaging
system for the photoionization beam that allows us to create higher resolution
features and its application to extend the observation of ion acoustic waves to
shorter wavelengths. We also describe the formation of sculpted density
profiles to create fast expansion of plasma into vacuum and streaming plasmas
Shell sources as a probe of relativistic effects in neutron star models
A perturbing shell is introduced as a device for studying the excitation of
fluid motions in relativistic stellar models. We show that this approach allows
a reasonably clean separation of radiation from the shell and from fluid
motions in the star, and provides broad flexibility in the location and
timescale of perturbations driving the fluid motions. With this model we
compare the relativistic and Newtonian results for the generation of even
parity gravitational waves from constant density models. Our results suggest
that relativistic effects will not be important in computations of the
gravitational emission except possibly in the case of excitation of the neutron
star on very short time scales.Comment: 16 pages LaTeX with 6 eps figures; submitted to Phys. Rev.
- …