7,956 research outputs found

    Parton Distributions

    Full text link
    I discuss our current understanding of parton distributions. I begin with the underlying theoretical framework, and the way in which different data sets constrain different partons, highlighting recent developments. The methods of examining the uncertainties on the distributions and those physical quantities dependent on them is analysed. Finally I look at the evidence that additional theoretical corrections beyond NLO perturbative QCD may be necessary, what type of corrections are indicated and the impact these may have on the uncertainties.Comment: Invited talk at "XXI International Symposium on Lepton and Photon Interactions at High Energies," (Fermilab, Chicago, August 2003). 12 pages, 21 figure

    Complex Wave Numbers in the Vicinity of the Schwarzschild Event Horizon

    Full text link
    This paper is devoted to investigate the cold plasma wave properties outside the event horizon of the Schwarzschild planar analogue. The dispersion relations are obtained from the corresponding Fourier analyzed equations for non-rotating and rotating, non-magnetized and magnetized backgrounds. These dispersion relations provide complex wave numbers. The wave numbers are shown in graphs to discuss the nature and behavior of waves and the properties of plasma lying in the vicinity of the Schwarzschild event horizon.Comment: 21 pages, 9 figures, accepted for publication Int. J. Mod. Phys.

    Universal properties of the near-horizon optical geometry

    Full text link
    We make use of the fact that the optical geometry near a static non-degenerate Killing horizon is asymptotically hyperbolic to investigate universal features of black hole physics. We show how the Gauss-Bonnet theorem allows certain lensing scenarios to be ruled in or out. We find rates for the loss of scalar, vector and fermionic `hair' as objects fall quasi- statically towards the horizon. In the process we find the Lienard-Wiechert potential for hyperbolic space and calculate the force between electrons mediated by neutrinos, extending the flat space result of Feinberg and Sucher. We use the enhanced conformal symmetry of the Schwarzschild and Reissner-Nordstrom backgrounds to re-derive the electrostatic field due to a point charge in a simple fashion

    Waveless Approximation Theories of Gravity

    Get PDF
    The analysis of a general multibody physical system governed by Einstein's equations in quite difficult, even if numerical methods (on a computer) are used. Some of the difficulties -- many coupled degrees of freedom, dynamic instability -- are associated with the presence of gravitational waves. We have developed a number of ``waveless approximation theories'' (WAT) which repress the gravitational radiation and thereby simplify the analysis. The matter, according to these theories, evolves dynamically. The gravitational field, however, is determined at each time step by a set of elliptic equations with matter sources. There is reason to believe that for many physical systems, the WAT-generated system evolution is a very accurate approximation to that generated by the full Einstein theory

    Relativistic Stellar Pulsations With Near-Zone Boundary Conditions

    Get PDF
    A new method is presented here for evaluating approximately the pulsation modes of relativistic stellar models. This approximation relies on the fact that gravitational radiation influences these modes only on timescales that are much longer than the basic hydrodynamic timescale of the system. This makes it possible to impose the boundary conditions on the gravitational potentials at the surface of the star rather than in the asymptotic wave zone of the gravitational field. This approximation is tested here by predicting the frequencies of the outgoing non-radial hydrodynamic modes of non-rotating stars. The real parts of the frequencies are determined with an accuracy that is better than our knowledge of the exact frequencies (about 0.01%) except in the most relativistic models where it decreases to about 0.1%. The imaginary parts of the frequencies are determined with an accuracy of approximately M/R, where M is the mass and R is the radius of the star in question.Comment: 10 pages (REVTeX 3.1), 5 figs., 1 table, fixed minor typos, published in Phys. Rev. D 56, 2118 (1997

    Relativistic Radiative Transfer for Spherical Flows

    Full text link
    We present a new complete set of Lagrangian relativistic hydrodynamical equations describing the transfer of energy and momentum between a standard fluid and a radiation fluid in a general non-stationary spherical flow. The new set of equations has been derived for a particular application to the study of the cosmological Quark--Hadron transition but can also be used in other contexts.Comment: 28 pages, 9 postscript figs, Plain Te

    Nonlinear dynamics, rectification, and phase locking for particles on symmetrical two-dimensional periodic substrates with dc and circular ac drives

    Full text link
    We investigate the dynamical motion of particles on a two-dimensional symmetric periodic substrate in the presence of both a dc drive along a symmetry direction of the periodic substrate and an additional circular ac drive. For large enough ac drives, the particle orbit encircles one or more potential maxima of the periodic substrate. In this case, when an additional increasing dc drive is applied in the longitudinal direction, the longitudinal velocity increases in a series of discrete steps that are integer multiples of the lattice constant of the substrate times the frequency. Fractional steps can also occur. These integer and fractional steps correspond to distinct stable dynamical orbits. A number of these phases also show a rectification in the positive or negative transverse direction where a non-zero transverse velocity occurs in the absence of a dc transverse drive. We map out the phase diagrams of the regions of rectification as a function of ac amplitude, and find a series of tongues. Most of the features, including the steps in the longitudinal velocity and the transverse rectification, can be captured with a simple toy model and by arguments from nonlinear maps. We have also investigated the effects of thermal disorder and incommensuration on the rectification phenomena, and find that for increasing disorder, the rectification regions are gradually smeared and the longitudinal velocity steps are no longer flat but show a linearly increasing velocity.Comment: 14 pages, 17 postscript figure

    High Resolution Ionization of Ultracold Neutral Plasmas

    Full text link
    Collective effects, such as waves and instabilities, are integral to our understanding of most plasma phenomena. We have been able to study these in ultracold neutral plasmas by shaping the initial density distribution through spatial modulation of the ionizing laser intensity. We describe a relay imaging system for the photoionization beam that allows us to create higher resolution features and its application to extend the observation of ion acoustic waves to shorter wavelengths. We also describe the formation of sculpted density profiles to create fast expansion of plasma into vacuum and streaming plasmas

    Shell sources as a probe of relativistic effects in neutron star models

    Get PDF
    A perturbing shell is introduced as a device for studying the excitation of fluid motions in relativistic stellar models. We show that this approach allows a reasonably clean separation of radiation from the shell and from fluid motions in the star, and provides broad flexibility in the location and timescale of perturbations driving the fluid motions. With this model we compare the relativistic and Newtonian results for the generation of even parity gravitational waves from constant density models. Our results suggest that relativistic effects will not be important in computations of the gravitational emission except possibly in the case of excitation of the neutron star on very short time scales.Comment: 16 pages LaTeX with 6 eps figures; submitted to Phys. Rev.
    • …
    corecore