6,919 research outputs found

    In-Chain Tunneling Through Charge-Density Wave Nanoconstrictions and Break-Junctions

    Full text link
    We have fabricated longitudinal nanoconstrictions in the charge-density wave conductor (CDW) NbSe3_{3} using a focused ion beam and using a mechanically controlled break-junction technique. Conductance peaks are observed below the TP1_{P1}=145=145 K and TP2_{P2}=59=59 K CDW transitions, which correspond closely with previous values of the full CDW gaps 2Δ12\Delta_{1} and 2Δ22\Delta_{2} obtained from photo-emission. These results can be explained by assuming CDW-CDW tunneling in the presence of an energy gap corrugation ϵ2\epsilon_{2} comparable to Δ2\Delta_{2}, which eliminates expected peak at Δ1+Δ2\Delta_{1}+\Delta_{2}. The nanometer length-scales our experiments imply indicate that an alternative explanation based on tunneling through back-to-back CDW-normal junctions is unlikely.Comment: 5 pages, 3 figures, submitted to physical review letter

    Distortion of Schwarzschild-anti-de Sitter black holes to black strings

    Full text link
    Motivated by the existence of black holes with various topologies in four-dimensional spacetimes with a negative cosmological constant, we study axisymmetric static solutions describing any large distortions of Schwarzschild-anti-de Sitter black holes parametrized by the mass mm. Under the approximation such that mm is much larger than the anti-de Sitter radius, it is found that a cylindrically symmetric black string is obtained as a special limit of distorted spherical black holes. Such a prolonged distortion of the event horizon connecting a Schwarzschild-anti-de Sitter black hole to a black string is allowed without violating both the usual black hole thermodynamics and the hoop conjecture for the horizon circumference.Comment: 13 pages, accepted for publication in Physical Review

    Gravitational Wave Burst Source Direction Estimation using Time and Amplitude Information

    Get PDF
    In this article we study two problems that arise when using timing and amplitude estimates from a network of interferometers (IFOs) to evaluate the direction of an incident gravitational wave burst (GWB). First, we discuss an angular bias in the least squares timing-based approach that becomes increasingly relevant for moderate to low signal-to-noise ratios. We show how estimates of the arrival time uncertainties in each detector can be used to correct this bias. We also introduce a stand alone parameter estimation algorithm that can improve the arrival time estimation and provide root-sum-squared strain amplitude (hrss) values for each site. In the second part of the paper we discuss how to resolve the directional ambiguity that arises from observations in three non co-located interferometers between the true source location and its mirror image across the plane containing the detectors. We introduce a new, exact relationship among the hrss values at the three sites that, for sufficiently large signal amplitudes, determines the true source direction regardless of whether or not the signal is linearly polarized. Both the algorithm estimating arrival times, arrival time uncertainties, and hrss values and the directional follow-up can be applied to any set of gravitational wave candidates observed in a network of three non co-located interferometers. As a case study we test the methods on simulated waveforms embedded in simulations of the noise of the LIGO and Virgo detectors at design sensitivity.Comment: 10 pages, 14 figures, submitted to PR

    Terminating Wnt signals: a novel nuclear export mechanism targets activated β-catenin

    Get PDF
    Nuclear targeting of β-catenin is an obligatory step in Wnt signal transduction, but the factors that control import and export remain to be clarified. In this issue, Hendriksen et al. (p. 785) show that the RanBP3 export factor antagonizes β-catenin/T cell factor (TCF) transcription by targeting the signaling-competent form of β-catenin. We speculate that cells may use multiple export mechanisms to inhibit β-catenin signaling in different ways

    Nonlinear dynamics, rectification, and phase locking for particles on symmetrical two-dimensional periodic substrates with dc and circular ac drives

    Full text link
    We investigate the dynamical motion of particles on a two-dimensional symmetric periodic substrate in the presence of both a dc drive along a symmetry direction of the periodic substrate and an additional circular ac drive. For large enough ac drives, the particle orbit encircles one or more potential maxima of the periodic substrate. In this case, when an additional increasing dc drive is applied in the longitudinal direction, the longitudinal velocity increases in a series of discrete steps that are integer multiples of the lattice constant of the substrate times the frequency. Fractional steps can also occur. These integer and fractional steps correspond to distinct stable dynamical orbits. A number of these phases also show a rectification in the positive or negative transverse direction where a non-zero transverse velocity occurs in the absence of a dc transverse drive. We map out the phase diagrams of the regions of rectification as a function of ac amplitude, and find a series of tongues. Most of the features, including the steps in the longitudinal velocity and the transverse rectification, can be captured with a simple toy model and by arguments from nonlinear maps. We have also investigated the effects of thermal disorder and incommensuration on the rectification phenomena, and find that for increasing disorder, the rectification regions are gradually smeared and the longitudinal velocity steps are no longer flat but show a linearly increasing velocity.Comment: 14 pages, 17 postscript figure

    Previous reproductive history and post-natal family planning among HIV-infected women in Ukraine

    Get PDF
    BACKGROUND: Ukraine has the highest antenatal HIV prevalence in Europe. The national prevention of mother-to-child transmission (MTCT) programme has reduced the MTCT rate, but less attention has been given to the prevention of unintended pregnancy among HIV-positive women. Our objectives were to describe the reproductive health, condom use and family planning (FP) practices of HIV-positive childbearing Ukrainian women and to identify factors associated with different methods of post-natal contraception. METHODS: HIV-infected childbearing women, diagnosed before or during pregnancy, were enrolled prospectively in a post-natal cohort study in four regional HIV/AIDS centres in Ukraine from December 2007. Logistic regression models were used to identify factors associated with post-natal FP practices. RESULTS: Data were available for 371 women enrolled by March 2009; 82% (n = 303) were married or cohabiting, 27% (97 of 363) reported a current HIV-negative sexual partner and 69% were diagnosed with HIV during their most recent pregnancy. Overall, 21% (75 of 349) of women were not using contraception post-natally (of whom 80% reported no current sexual activity), 50% (174 of 349) used condoms, 20% (74 of 349) relied solely/partially on coitus interruptus and 4% used hormonal methods or intrauterine device. Among married/cohabiting women, consistent use of condoms in the previous pregnancy [AOR 1.96 (95%CI 1.06–3.62)], having an HIV-positive partner [AOR 0.42 (0.20–0.87)], current sexual activity [AOR 4.53 (1.19–17.3)] and study site were significantly associated with post-natal condom use; 16% of those with HIV-negative partners did not use condoms. Risk factors for non-use of FP were lack of affordability [AOR 6.34 (1.73–23.2)] and inconsistent use of condoms in the previous pregnancy [AOR 7.25 (1.41–37.2)]. CONCLUSIONS: More than 40% of HIV-positive women in this population are at risk of unintended pregnancy and the one in six women in HIV-discordant couples not using barrier methods risk transmitting HIV to their partners. Our study results are limited by the observational nature of the data and the potential for both measured and unmeasured confounding

    HadISD: a quality-controlled global synoptic report database for selected variables at long-term stations from 1973--2011

    Get PDF
    [Abridged] This paper describes the creation of HadISD: an automatically quality-controlled synoptic resolution dataset of temperature, dewpoint temperature, sea-level pressure, wind speed, wind direction and cloud cover from global weather stations for 1973--2011. The full dataset consists of over 6000 stations, with 3427 long-term stations deemed to have sufficient sampling and quality for climate applications requiring sub-daily resolution. As with other surface datasets, coverage is heavily skewed towards Northern Hemisphere mid-latitudes. The dataset is constructed from a large pre-existing ASCII flatfile data bank that represents over a decade of substantial effort at data retrieval, reformatting and provision. These raw data have had varying levels of quality control applied to them by individual data providers. The work proceeded in several steps: merging stations with multiple reporting identifiers; reformatting to netCDF; quality control; and then filtering to form a final dataset. Particular attention has been paid to maintaining true extreme values where possible within an automated, objective process. Detailed validation has been performed on a subset of global stations and also on UK data using known extreme events to help finalise the QC tests. Further validation was performed on a selection of extreme events world-wide (Hurricane Katrina in 2005, the cold snap in Alaska in 1989 and heat waves in SE Australia in 2009). Although the filtering has removed the poorest station records, no attempt has been made to homogenise the data thus far. Hence non-climatic, time-varying errors may still exist in many of the individual station records and care is needed in inferring long-term trends from these data. A version-control system has been constructed for this dataset to allow for the clear documentation of any updates and corrections in the future.Comment: Published in Climate of the Past, www.clim-past.net/8/1649/2012/. 31 pages, 23 figures, 9 pages. For data see http://www.metoffice.gov.uk/hadobs/hadis

    The Pulsed Neutron Beam EDM Experiment

    Full text link
    We report on the Beam EDM experiment, which aims to employ a pulsed cold neutron beam to search for an electric dipole moment instead of the established use of storable ultracold neutrons. We present a brief overview of the basic measurement concept and the current status of our proof-of-principle Ramsey apparatus

    Physics of Trans-Planckian Gravity

    Full text link
    We study the field theoretical description of a generic theory of gravity flowing to Einstein General Relativity in IR. We prove that, if ghost-free, in the weakly coupled regime such a theory can never become weaker than General Relativity. Using this fact, as a byproduct, we suggest that in a ghost-free theory of gravity trans-Planckian propagating quantum degrees of freedom cannot exist. The only physical meaning of a trans-Planckian pole is the one of a classical state (Black Hole) which is described by the light IR quantum degrees of freedom and gives exponentially-suppressed contributions to virtual processes. In this picture Einstein gravity is UV self-complete, although not Wilsonian, and sub-Planckian distances are unobservable in any healthy theory of gravity. We then finally show that this UV/IR correspondence puts a severe constraint on any attempt of conventional Wilsonian UV-completion of trans-Planckian gravity. Specifically, there is no well-defined energy domain in which gravity could become asymptotically weak or safe.Comment: 23 pages, 4 figures, v2: Paper reorganized to improve clarity; additional explanations and references added; version accepted for publication in Phys. Rev.

    Comments on the black hole information problem

    Full text link
    String theory provides numerous examples of duality between gravitational theories and unitary gauge theories. To resolve the black hole information paradox in this setting, it is necessary to better understand how unitarity is implemented on the gravity side. We argue that unitarity is restored by nonlocal effects whose initial magnitude is suppressed by the exponential of the Bekenstein-Hawking entropy. Time-slicings for which effective field theory is valid are obtained by demanding the mutual back-reaction of quanta be small. The resulting bounds imply that nonlocal effects do not lead to observable violations of causality or conflict with the equivalence principle for infalling observers, yet implement information retrieval for observers who stay outside the black hole.Comment: 18 pages, 2 figures, revtex, v2 figure added and some improvements to presentatio
    corecore