5,826 research outputs found
Head-on infall of two compact objects: Third post-Newtonian Energy Flux
Head-on infall of two compact objects with arbitrary mass ratio is
investigated using the multipolar post-Minkowskian approximation method. At the
third post-Newtonian order the energy flux, in addition to the instantaneous
contributions, also includes hereditary contributions consisting of the
gravitational-wave tails, tails-of-tails and the tail-squared terms. The
results are given both for infall from infinity and also for infall from a
finite distance. These analytical expressions should be useful for the
comparison with the high accuracy numerical relativity results within the limit
in which post-Newtonian approximations are valid.Comment: 25 pages, 2 figures, This version includes the changes appearing in
the Erratum published in Phys. Rev.
Prospects for direct detection of circular polarization of gravitational-wave background
We discussed prospects for directly detecting circular polarization signal of
gravitational wave background. We found it is generally difficult to probe the
monopole mode of the signal due to broad directivity of gravitational wave
detectors. But the dipole (l=1) and octupole (l=3) modes of the signal can be
measured in a simple manner by combining outputs of two unaligned detectors,
and we can dig them deeply under confusion and detector noises. Around f~0.1mHz
LISA will provide ideal data streams to detect these anisotropic components
whose magnitudes are as small as ~1 percent of the detector noise level in
terms of the non-dimensional energy density \Omega_{GW}(f).Comment: 5 pages, 1 figure, PRL in pres
Commercial air transport hazard warning and avoidance system. Volume 2 - Requirements studies Final report
Operational requirements and cost effectiveness of commercial air transport hazard warning and avoidance syste
Evolution of a Self-interacting Scalar Field in the spacetime of a Higher Dimensional Black Hole
In the spacetime of n-dimensional static charged black hole we examine the
mechanism by which the self-interacting scalar hair decay. It is turned out
that the intermediate asymptotic behaviour of the self-interacting scalar field
is determined by an oscilatory inverse power law. We confirm our results by
numerical calculations.Comment: RevTex, 6 pages, 8 figures, to be published in Phys.Rev.D1
Gravitational waves from black hole-neutron star binaries I: Classification of waveforms
Using our new numerical-relativity code SACRA, long-term simulations for
inspiral and merger of black hole (BH)-neutron star (NS) binaries are
performed, focusing particularly on gravitational waveforms. As the initial
conditions, BH-NS binaries in a quasiequilibrium state are prepared in a
modified version of the moving-puncture approach. The BH is modeled by a
nonspinning moving puncture and for the NS, a polytropic equation of state with
and the irrotational velocity field are employed. The mass ratio of
the BH to the NS, , is chosen in the range between 1.5
and 5. The compactness of the NS, defined by , is chosen to be between 0.145 and 0.178. For a large value of for
which the NS is not tidally disrupted and is simply swallowed by the BH,
gravitational waves are characterized by inspiral, merger, and ringdown
waveforms. In this case, the waveforms are qualitatively the same as that from
BH-BH binaries. For a sufficiently small value of Q \alt 2, the NS may be
tidally disrupted before it is swallowed by the BH. In this case, the amplitude
of the merger and ringdown waveforms is very low, and thus, gravitational waves
are characterized by the inspiral waveform and subsequent quick damping. The
difference in the merger and ringdown waveforms is clearly reflected in the
spectrum shape and in the "cut-off" frequency above which the spectrum
amplitude steeply decreases. When an NS is not tidally disrupted (e.g., for
Q=5), kick velocity, induced by asymmetric gravitational wave emission, agrees
approximately with that derived for the merger of BH-BH binaries, whereas for
the case that the tidal disruption occurs, the kick velocity is significantly
suppressed.Comment: 25 pages, 3 jpg figures, accepted for publication in PRD; erratum is
added on Jul 23. 201
BFKL at next-to-leading order
This is a summary of the contributions on the next-to-leading order
corrections to the BFKL equation which were presented to the `Small-x and
Diffraction' working group at the 1998 Durham Workshop on HERA Physics.Comment: 6 pages, 2 figure
Electromagnetic radiation produces frame dragging
It is shown that for a generic electrovacuum spacetime, electromagnetic
radiation produces vorticity of worldlines of observers in a Bondi--Sachs
frame. Such an effect (and the ensuing gyroscope precession with respect to the
lattice) which is a reminiscence of generation of vorticity by gravitational
radiation, may be linked to the nonvanishing of components of the Poynting and
the super--Poynting vectors on the planes othogonal to the vorticity vector.
The possible observational relevance of such an effect is commented.Comment: 8 pages RevTex 4-1; updated version to appear in Physical Review
Testing post-Newtonian theory with gravitational wave observations
The Laser Interferometric Space Antenna (LISA) will observe supermassive
black hole binary mergers with amplitude signal-to-noise ratio of several
thousands. We investigate the extent to which such observations afford
high-precision tests of Einstein's gravity. We show that LISA provides a unique
opportunity to probe the non-linear structure of post-Newtonian theory both in
the context of general relativity and its alternatives.Comment: 9 pages, 2 figure
Propagation of gravitational waves from slow motion sources in a Coulomb type potential
We consider the propagation of gravitational waves generated by slow motion
sources in Coulomb type potential due to the mass of the source. Then, the
formula for gravitational waveform including tail is obtained in a
straightforward manner by using the spherical Coulomb function. We discuss its
relation with the formula in the previous work.Comment: 13 pages, no figures, to be published in Phys. Rev.
Relativistic Radiative Transfer for Spherical Flows
We present a new complete set of Lagrangian relativistic hydrodynamical
equations describing the transfer of energy and momentum between a standard
fluid and a radiation fluid in a general non-stationary spherical flow. The new
set of equations has been derived for a particular application to the study of
the cosmological Quark--Hadron transition but can also be used in other
contexts.Comment: 28 pages, 9 postscript figs, Plain Te
- …