1,871 research outputs found
Universality and Clustering in 1+1 Dimensional Superstring-Bit Models
We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB
superstring. This low dimension model escapes the problems encountered in
higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For
noninteracting polymers of bits, the exactly soluble linear superpotential
describing bit interactions is in a large universality class of superpotentials
which includes ones bounded at spatial infinity; (3) The latter are used to
construct a superstring-bit model with the clustering properties needed to
define an -matrix for closed polymers of superstring-bits.Comment: 11 pages, Latex documen
Spontaneous Symmetry Breaking at Infinite Momentum without P+ Zero-Modes
The nonrelativistic interpretation of quantum field theory achieved by
quantization in an infinite momentum frame is spoiled by the inclusion of a
mode of the field carrying p+=0. We therefore explore the viability of doing
without such a mode in the context of spontaneous symmetry breaking (SSB),
where its presence would seem to be most needed. We show that the physics of
SSB in scalar quantum field theory in 1+1 space-time dimensions is accurately
described without a zero-mode.Comment: LaTeX, 8 pages, 3 eps figure
Renormalization in Quantum Mechanics
We implement the concept of Wilson renormalization in the context of simple
quantum mechanical systems. The attractive inverse square potential leads to a
\b function with a nontrivial ultraviolet stable fixed point and the Hulthen
potential exhibits the crossover phenomenon. We also discuss the implementation
of the Wilson scheme in the broader context of one dimensional potential
problems. The possibility of an analogue of Zamolodchikov's function in
these systems is also discussed.Comment: 16 pages, UR-1310, ER-40685-760. (Additional references included.
Small x divergences in the Similarity RG approach to LF QCD
We study small x divergences in boost invariant similarity renormalization
group approach to light-front QCD in a heavy quark-antiquark state. With the
boost invariance maintained, the infrared divergences do not cancel out in the
physical states, contrary to previous studies where boost invariance was
violated by a choice of a renormalization scale. This may be an indication that
the zero mode, or nontrivial light-cone vacuum structure, might be important
for recovering full Lorentz invariance.Comment: 23 pgs, 1 fig. Revised for publication: typos corrected, improved
discussion of regularizatio
The Stellar Content of the Polar Rings in the Galaxies NGC 2685 and NGC 4650A
We present the results of stellar photometry of polar-ring galaxies NGC 2685
and NGC 4650A, using the archival data obtained with the Hubble Space
Telescope's Wide Field Planetary Camera 2. Polar rings of these galaxies were
resolved into ~800 and ~430 stellar objects in the B, V and Ic bands,
considerable part of which are blue supergiants located in the young stellar
complexes. The stellar features in the CM-diagrams are best represented by
isochrones with metallicity Z = 0.008. The process of star formation in the
polar rings of both galaxies was continuous and the age of the youngest
detected stars is about 9 Myr for NGC 2685 and 6.5 Myr for NGC 4650A.Comment: 21 pages, 9 figures, AJ 2004 February, accepte
Transverse Lattice Approach to Light-Front Hamiltonian QCD
We describe a non-perturbative procedure for solving from first principles
the light-front Hamiltonian problem of SU(N) pure gauge theory in D spacetime
dimensions (D>2), based on enforcing Lorentz covariance of observables. A
transverse lattice regulator and colour-dielectric link fields are employed,
together with an associated effective potential. We argue that the light-front
vacuum is necessarily trivial for large enough lattice spacing, and clarify why
this leads to an Eguchi-Kawai dimensional reduction of observables to
1+1-dimensions in the infinite N limit. The procedure is then tested by
explicit calculations for 2+1-dimensional SU(infinity) gauge theory, within a
first approximation to the lattice effective potential. We identify a scaling
trajectory which produces Lorentz covariant behaviour for the lightest
glueballs. The predicted masses, in units of the measured string tension, are
in agreement with recent results from conventional Euclidean lattice
simulations. In addition, we obtain the potential between heavy sources and the
structure of the glueballs from their light-front wavefunctions. Finally, we
briefly discuss the extension of these calculations to 3+1-dimensions.Comment: 55 pages, uses macro boxedeps.tex, minor corrections in revised
versio
String Spectrum of 1+1-Dimensional Large N QCD with Adjoint Matter
We propose gauging matrix models of string theory to eliminate unwanted
non-singlet states. To this end we perform a discretised light-cone
quantisation of large N gauge theory in 1+1 dimensions, with scalar or
fermionic matter fields transforming in the adjoint representation of SU(N).
The entire spectrum consists of bosonic and fermionic closed-string
excitations, which are free as N tends to infinity. We analyze the general
features of such bound states as a function of the cut-off and the gauge
coupling, obtaining good convergence for the case of adjoint fermions. We
discuss possible extensions of the model and the search for new non-critical
string theories.Comment: 20 pages (7 figures available from authors as postscipt files),
PUPT-134
A Review of Symmetry Algebras of Quantum Matrix Models in the Large-N Limit
This is a review article in which we will introduce, in a unifying fashion
and with more intermediate steps in some difficult calculations, two
infinite-dimensional Lie algebras of quantum matrix models, one for the open
string sector and one for the closed string sector. Physical observables of
quantum matrix models in the large-N limit can be expressed as elements of
these Lie algebras. We will see that both algebras arise as quotient algebras
of a larger Lie algebra. We will also discuss some properties of these Lie
algebras not published elsewhere yet, and briefly review their relationship
with well-known algebras like the Cuntz algebra, the Witt algebra and the
Virasoro algebra. We will also review how Yang--Mills theory, various low
energy effective models of string theory, quantum gravity, string-bit models,
and quantum spin chain models can be formulated as quantum matrix models.
Studying these algebras thus help us understand the common symmetry of these
physical systems.Comment: 77 pages, 21 eps figures, 1 table, LaTeX2.09; an invited review
articl
Microbial processing and production of aquatic fluorescent organic matter in a model freshwater system
© 2018 by the authors. Organic matter (OM) has an essential biogeochemical influence along the hydrological continuum and within aquatic ecosystems. Organic matter derived via microbial processes was investigated within a range of model freshwater samples over a 10-day period. For this, excitation-emission matrix (EEM) fluorescence spectroscopy in combination with parallel factor (PARAFAC) analysis was employed. This research shows the origin and processing of both protein-like and humic-like fluorescence within environmental and synthetic samples over the sampling period. The microbial origin of Peak T fluorescence is demonstrated within both synthetic samples and in environmental samples. Using a range of incubation temperatures provides evidence for the microbial metabolic origin of Peak T fluorescence. From temporally resolved experiments, evidence is provided that Peak T fluorescence is an indication of metabolic activity at the microbial community level and not a proxy for bacterial enumeration. This data also reveals that humic-like fluorescence can be microbially derived in situ and is not solely of terrestrial origin, likely to result from the upregulation of cellular processes prior to cell multiplication. This work provides evidence that freshwater microbes can engineer fluorescent OM, demonstrating that microbial communities not only process, but also transform, fluorescent organic matter
Electromagnetic duality and light-front coordinates
We review the light-front Hamiltonian approach for the Abelian gauge theory
in 3+1 dimensions, and then study electromagnetic duality in this framework.Comment: 18 pages, LaTeX, 2 references and a typo in an eqn. (19) corrected,
minor revisions in response to referee's repor
- …