1,871 research outputs found

    Universality and Clustering in 1+1 Dimensional Superstring-Bit Models

    Get PDF
    We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problems encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an SS-matrix for closed polymers of superstring-bits.Comment: 11 pages, Latex documen

    Spontaneous Symmetry Breaking at Infinite Momentum without P+ Zero-Modes

    Full text link
    The nonrelativistic interpretation of quantum field theory achieved by quantization in an infinite momentum frame is spoiled by the inclusion of a mode of the field carrying p+=0. We therefore explore the viability of doing without such a mode in the context of spontaneous symmetry breaking (SSB), where its presence would seem to be most needed. We show that the physics of SSB in scalar quantum field theory in 1+1 space-time dimensions is accurately described without a zero-mode.Comment: LaTeX, 8 pages, 3 eps figure

    Renormalization in Quantum Mechanics

    Full text link
    We implement the concept of Wilson renormalization in the context of simple quantum mechanical systems. The attractive inverse square potential leads to a \b function with a nontrivial ultraviolet stable fixed point and the Hulthen potential exhibits the crossover phenomenon. We also discuss the implementation of the Wilson scheme in the broader context of one dimensional potential problems. The possibility of an analogue of Zamolodchikov's CC function in these systems is also discussed.Comment: 16 pages, UR-1310, ER-40685-760. (Additional references included.

    Small x divergences in the Similarity RG approach to LF QCD

    Full text link
    We study small x divergences in boost invariant similarity renormalization group approach to light-front QCD in a heavy quark-antiquark state. With the boost invariance maintained, the infrared divergences do not cancel out in the physical states, contrary to previous studies where boost invariance was violated by a choice of a renormalization scale. This may be an indication that the zero mode, or nontrivial light-cone vacuum structure, might be important for recovering full Lorentz invariance.Comment: 23 pgs, 1 fig. Revised for publication: typos corrected, improved discussion of regularizatio

    The Stellar Content of the Polar Rings in the Galaxies NGC 2685 and NGC 4650A

    Full text link
    We present the results of stellar photometry of polar-ring galaxies NGC 2685 and NGC 4650A, using the archival data obtained with the Hubble Space Telescope's Wide Field Planetary Camera 2. Polar rings of these galaxies were resolved into ~800 and ~430 stellar objects in the B, V and Ic bands, considerable part of which are blue supergiants located in the young stellar complexes. The stellar features in the CM-diagrams are best represented by isochrones with metallicity Z = 0.008. The process of star formation in the polar rings of both galaxies was continuous and the age of the youngest detected stars is about 9 Myr for NGC 2685 and 6.5 Myr for NGC 4650A.Comment: 21 pages, 9 figures, AJ 2004 February, accepte

    Transverse Lattice Approach to Light-Front Hamiltonian QCD

    Get PDF
    We describe a non-perturbative procedure for solving from first principles the light-front Hamiltonian problem of SU(N) pure gauge theory in D spacetime dimensions (D>2), based on enforcing Lorentz covariance of observables. A transverse lattice regulator and colour-dielectric link fields are employed, together with an associated effective potential. We argue that the light-front vacuum is necessarily trivial for large enough lattice spacing, and clarify why this leads to an Eguchi-Kawai dimensional reduction of observables to 1+1-dimensions in the infinite N limit. The procedure is then tested by explicit calculations for 2+1-dimensional SU(infinity) gauge theory, within a first approximation to the lattice effective potential. We identify a scaling trajectory which produces Lorentz covariant behaviour for the lightest glueballs. The predicted masses, in units of the measured string tension, are in agreement with recent results from conventional Euclidean lattice simulations. In addition, we obtain the potential between heavy sources and the structure of the glueballs from their light-front wavefunctions. Finally, we briefly discuss the extension of these calculations to 3+1-dimensions.Comment: 55 pages, uses macro boxedeps.tex, minor corrections in revised versio

    String Spectrum of 1+1-Dimensional Large N QCD with Adjoint Matter

    Get PDF
    We propose gauging matrix models of string theory to eliminate unwanted non-singlet states. To this end we perform a discretised light-cone quantisation of large N gauge theory in 1+1 dimensions, with scalar or fermionic matter fields transforming in the adjoint representation of SU(N). The entire spectrum consists of bosonic and fermionic closed-string excitations, which are free as N tends to infinity. We analyze the general features of such bound states as a function of the cut-off and the gauge coupling, obtaining good convergence for the case of adjoint fermions. We discuss possible extensions of the model and the search for new non-critical string theories.Comment: 20 pages (7 figures available from authors as postscipt files), PUPT-134

    A Review of Symmetry Algebras of Quantum Matrix Models in the Large-N Limit

    Full text link
    This is a review article in which we will introduce, in a unifying fashion and with more intermediate steps in some difficult calculations, two infinite-dimensional Lie algebras of quantum matrix models, one for the open string sector and one for the closed string sector. Physical observables of quantum matrix models in the large-N limit can be expressed as elements of these Lie algebras. We will see that both algebras arise as quotient algebras of a larger Lie algebra. We will also discuss some properties of these Lie algebras not published elsewhere yet, and briefly review their relationship with well-known algebras like the Cuntz algebra, the Witt algebra and the Virasoro algebra. We will also review how Yang--Mills theory, various low energy effective models of string theory, quantum gravity, string-bit models, and quantum spin chain models can be formulated as quantum matrix models. Studying these algebras thus help us understand the common symmetry of these physical systems.Comment: 77 pages, 21 eps figures, 1 table, LaTeX2.09; an invited review articl

    Microbial processing and production of aquatic fluorescent organic matter in a model freshwater system

    Get PDF
    © 2018 by the authors. Organic matter (OM) has an essential biogeochemical influence along the hydrological continuum and within aquatic ecosystems. Organic matter derived via microbial processes was investigated within a range of model freshwater samples over a 10-day period. For this, excitation-emission matrix (EEM) fluorescence spectroscopy in combination with parallel factor (PARAFAC) analysis was employed. This research shows the origin and processing of both protein-like and humic-like fluorescence within environmental and synthetic samples over the sampling period. The microbial origin of Peak T fluorescence is demonstrated within both synthetic samples and in environmental samples. Using a range of incubation temperatures provides evidence for the microbial metabolic origin of Peak T fluorescence. From temporally resolved experiments, evidence is provided that Peak T fluorescence is an indication of metabolic activity at the microbial community level and not a proxy for bacterial enumeration. This data also reveals that humic-like fluorescence can be microbially derived in situ and is not solely of terrestrial origin, likely to result from the upregulation of cellular processes prior to cell multiplication. This work provides evidence that freshwater microbes can engineer fluorescent OM, demonstrating that microbial communities not only process, but also transform, fluorescent organic matter

    Electromagnetic duality and light-front coordinates

    Get PDF
    We review the light-front Hamiltonian approach for the Abelian gauge theory in 3+1 dimensions, and then study electromagnetic duality in this framework.Comment: 18 pages, LaTeX, 2 references and a typo in an eqn. (19) corrected, minor revisions in response to referee's repor
    • …
    corecore