2,670 research outputs found

    Stochastic model of optical variability of BL Lacertae

    Full text link
    We use optical photometric and polarimetric data of BL Lacertae that cover a period of 22 years to study the variability of the source. The long-term observations are employed for establishing parameters of a stochastic model consisting of the radiation from a steady polarized source and a number of variable components with different polarization parameters, proposed by Hagen-Thorn et al. earlier. We infer parameters of the model from the observations using numerical simulations based on a Monte Carlo method, with values of each model parameter selected from a Gaussian distribution. We determine the best set of model parameters by comparing model distributions to the observational ones using the chi-square criterion. We show that the observed photometric and polarimetric variability can be explained within a model with a steady source of high polarization, ~40%, and with direction of polarization parallel to the parsec scale jet, along with 10+-5 sources of variable polarization.Comment: 4 pages, 10 figures, published by Astronomy and Astrophysics; v2: typos correcte

    Bag Model for a Link in a Closed Gluonic Chain

    Full text link
    The large NcN_c limit of Yang-Mills gauge theory is the dynamics of a closed gluonic chain, but this fact does not obviate the inherently strong coupling nature of the dynamical problem. However, we suggest that a single link in such a chain might be reasonably described in the quasi-perturbative language of gluons and their interactions. To implement this idea, we use the MIT bag to model the physics of a nearest neighbor bond.Comment: 10 pages, LaTe

    Calculating the Rest Tension for a Polymer of String Bits

    Full text link
    We explore the application of approximation schemes from many body physics, including the Hartree-Fock method and random phase approximation (RPA), to the problem of analyzing the low energy excitations of a polymer chain made up of bosonic string bits. We accordingly obtain an expression for the rest tension T0T_0 of the bosonic relativistic string in terms of the parameters characterizing the microscopic string bit dynamics. We first derive an exact connection between the string tension and a certain correlation function of the many-body string bit system. This connection is made for an arbitrary interaction potential between string bits and relies on an exact dipole sum rule. We then review an earlier calculation by Goldstone of the low energy excitations of a polymer chain using RPA. We assess the accuracy of the RPA by calculating the first order corrections. For this purpose we specialize to the unique scale invariant potential, namely an attractive delta function potential in two (transverse) dimensions. We find that the corrections are large, and discuss a method for summing the large terms. The corrections to this improved RPA are roughly 15\%.Comment: 44 pages, phyzzx, psfig required, Univ. of Florida preprint, UFIFT-HEP-94

    More On The Connection Between Planar Field Theory And String Theory

    Get PDF
    We continue work on the connection between world sheet representation of the planar phi^3 theory and string formation. The present article, like the earlier work, is based on the existence of a solitonic solution on the world sheet, and on the zero mode fluctuations around this solution. The main advance made in this paper is the removal of the cutoff and the transition to the continuum limit on the world sheet. The result is an action for the modes whose energies remain finite in this limit (light modes). The expansion of this action about a dense background of graphs on the world sheet leads to the formation of a string.Comment: 27 pages, 3 figure

    1+11+1-Dimensional Large NN QCD coupled to Adjoint Fermions

    Full text link
    We consider 1+1-dimensional QCD coupled to Majorana fermions in the adjoint representation of the gauge group SU(N)SU(N). Pair creation of partons (fermion quanta) is not suppressed in the large-NN limit, where the glueball-like bound states become free. In this limit the spectrum is given by a linear \lc\ Schr\" odinger equation, which we study numerically using the discretized \lcq. We find a discrete spectrum of bound states, with the logarithm of the level density growing approximately linearly with the mass. The wave function of a typical excited state is a complicated mixture of components with different parton numbers. A few low-lying states, however, are surprisingly close to being eigenstates of the parton number, and their masses can be accurately calculated by truncated diagonalizations.Comment: 22 pages + 9 figures (available by request from [email protected]), uses phyzzx.tex + tables.tex PUPT-1413, IASSNS-HEP-93/4

    Field Theory On The World Sheet: Improvements And Generalizations

    Full text link
    This article is the continuation of a project of investigating planar phi^3 model in various dimensions. The idea is to reformulate them on the world sheet, and then to apply the classical (meanfield) approximation, with two goals: To show that the ground state of the model is a solitonic configuration on the world sheet, and the quantum fluctuations around the soliton lead to the formation of a transverse string. After a review of some of the earlier work, we introduce and discuss several generalizations and new results. In 1+2 dimensions, a rigorous upper bound on the solitonic energy is established. A phi^4 interaction is added to stabilize the original phi^3 model. In 1+3 and 1+5 dimensions, an improved treatment of the ultraviolet divergences is given. And significantly, we show that our approximation scheme can be imbedded into a systematic strong coupling expansion. Finally, the spectrum of quantum fluctuations around the soliton confirms earlier results: In 1+2 and 1+3 dimensions, a transverse string is formed on the world sheet.Comment: 29 pages, 5 figures, several typos and eqs.(74) and (75) are corrected, a comment added to section

    Spontaneous Symmetry Breaking at Infinite Momentum without P+ Zero-Modes

    Full text link
    The nonrelativistic interpretation of quantum field theory achieved by quantization in an infinite momentum frame is spoiled by the inclusion of a mode of the field carrying p+=0. We therefore explore the viability of doing without such a mode in the context of spontaneous symmetry breaking (SSB), where its presence would seem to be most needed. We show that the physics of SSB in scalar quantum field theory in 1+1 space-time dimensions is accurately described without a zero-mode.Comment: LaTeX, 8 pages, 3 eps figure
    • …
    corecore