3,195 research outputs found

    Universality and Clustering in 1+1 Dimensional Superstring-Bit Models

    Get PDF
    We construct a 1+1 dimensional superstring-bit model for D=3 Type IIB superstring. This low dimension model escapes the problems encountered in higher dimension models: (1) It possesses full Galilean supersymmetry; (2) For noninteracting polymers of bits, the exactly soluble linear superpotential describing bit interactions is in a large universality class of superpotentials which includes ones bounded at spatial infinity; (3) The latter are used to construct a superstring-bit model with the clustering properties needed to define an SS-matrix for closed polymers of superstring-bits.Comment: 11 pages, Latex documen

    Bag Model for a Link in a Closed Gluonic Chain

    Full text link
    The large NcN_c limit of Yang-Mills gauge theory is the dynamics of a closed gluonic chain, but this fact does not obviate the inherently strong coupling nature of the dynamical problem. However, we suggest that a single link in such a chain might be reasonably described in the quasi-perturbative language of gluons and their interactions. To implement this idea, we use the MIT bag to model the physics of a nearest neighbor bond.Comment: 10 pages, LaTe

    The Outburst of the Blazar AO 0235+164 in 2006 December: Shock-in-Jet Interpretation

    Full text link
    We present the results of polarimetric (RR band) and multicolor photometric (BVRIJHKBVRIJHK) observations of the blazar AO 0235+16 during an outburst in 2006 December. The data reveal a short timescale of variability (several hours), which increases from optical to near-IR wavelengths; even shorter variations are detected in polarization. The flux density correlates with the degree of polarization, and at maximum degree of polarization the electric vector tends to align with the parsec-scale jet direction. We find that a variable component with a steady power-law spectral energy distribution and very high optical polarization (30-50%) is responsible for the variability. We interpret these properties of the blazar withina model of a transverse shock propagating down the jet. In this case a small change in the viewing angle of the jet, by â‰Č1o\lesssim 1^o, and a decrease in the shocked plasma compression by a factor of ∌\sim1.5 are sufficient to account for the variability.Comment: 22 pages, 8 figures, accepted for Ap

    Defining the Force between Separated Sources on a Light Front

    Get PDF
    The Newtonian character of gauge theories on a light front requires that the longitudinal momentum P^+, which plays the role of Newtonian mass, be conserved. This requirement conflicts with the standard definition of the force between two sources in terms of the minimal energy of quantum gauge fields in the presence of a quark and anti-quark pinned to points separated by a distance R. We propose that, on a light front, the force be defined by minimizing the energy of gauge fields in the presence of a quark and an anti-quark pinned to lines (1-branes) oriented in the longitudinal direction singled out by the light front and separated by a transverse distance R. Such sources will have a limited 1+1 dimensional dynamics. We study this proposal for weak coupling gauge theories by showing how it leads to the Coulomb force law. For QCD we also show how asymptotic freedom emerges by evaluating the S-matrix through one loop for the scattering of a particle in the N_c representation of color SU(N_c) on a 1-brane by a particle in the \bar N_c representation of color on a parallel 1-brane separated from the first by a distance R<<1/Lambda_{QCD}. Potential applications to the problem of confinement on a light front are discussed.Comment: LaTeX, 15 pages, 12 figures; minor typos corrected; numerical correction in equation 3.

    Subcritical String and Large N QCD

    Full text link
    We pursue the possibility of using subcritical string theory in 4 space-time dimensions to establish a string dual for large N QCD. In particular we study the even G-parity sector of the 4 dimensional Neveu-Schwarz dual resonance model as the natural candidate for this string theory. Our point of view is that the open string dynamics given by this model will {\it determine} the appropriate subcritical closed string theory, a tree level background of which should describe the sum of planar multi-loop open string diagrams. We examine the one loop open string diagram, which contains information about the closed string spectrum at weak coupling. Higher loop open string diagrams will be needed to determine closed string interactions. We also analyze the field theory limit of the one loop open string diagram and recover the correct running coupling behavior of the limiting gauge theory.Comment: 18 pages, 2 figures, error in eqs 46 and 47 correcte

    Telemetry ground system development via the component approach

    Get PDF
    NASA's deployment of major space projects such as the Earth Observing System (EOS) will demand increased functionality and ground-based telemetry processing performance well above current capabilities. At the NASA/Goddard Space Flight Center, custom hardware and software components have been developed and combined into a unique architecture to address this problem. The hardware components utilize Application Specific Integrated Circuits (ASIC's) developed specifically to support NASA's telemetry data systems needs and designed to handle data rates up to 300 Mbps. A generalized set of software components, called the Telemetry Processing Control Environment facilitate the rapid construction of control and monitoring functions for the ground-based telemetry processing systems. This combination of hardware and software elements enables rapid construction of flexible, cost-effective telemetry processing systems capable of meeting the performance requirements facing NASA in the coming decade

    Color Variability of the Blazar AO 0235+16

    Full text link
    Multicolor (UBVRIJHK) observations of the blazar AO 0235+16 are analyzed. The light curves were compiled at the Turin Observatory from literature data and the results of observations obtained in the framework of the WEBT program (http://www.to.astro/blazars/webt/). The color variability of the blazar was studied in eight time intervals with a sufficient number of multicolor optical observations; JHK data are available for only one of these. The spectral energy distribution (SED) of the variable component remained constant within each interval, but varied strongly from one interval to another. After correction for dust absorption, the SED can be represented by a power law in all cases, providing evidence for a synchrotron nature of the variable component. We show that the variability at both optical and IR wavelengths is associated with the same variable source.Comment: 11 pages, 9 figures, 4 tables, accepted for publication in Astronomy Report

    Supersymmetric Quantum Mechanics for String-Bits

    Get PDF
    We develop possible versions of supersymmetric single particle quantum mechanics, with application to superstring-bit models in view. We focus principally on space dimensions d=1,2,4,8d=1,2,4,8, the transverse dimensionalities of superstring in 3,4,6,103,4,6,10 space-time dimensions. These are the cases for which ``classical'' superstring makes sense, and also the values of dd for which Hooke's force law is compatible with the simplest superparticle dynamics. The basic question we address is: When is it possible to replace such harmonic force laws with more general ones, including forces which vanish at large distances? This is an important question because forces between string-bits that do not fall off with distance will almost certainly destroy cluster decomposition. We show that the answer is affirmative for d=1,2d=1,2, negative for d=8d=8, and so far inconclusive for d=4d=4.Comment: 17 pages, Late

    Regularized Green's Function for the Inverse Square Potential

    Full text link
    A Green's function approach is presented for the D-dimensional inverse square potential in quantum mechanics. This approach is implemented by the introduction of hyperspherical coordinates and the use of a real-space regulator in the regularized version of the model. The application of Sturm-Liouville theory yields a closed expression for the radial energy Green's function. Finally, the equivalence with a recent path-integral treatment of the same problem is explicitly shown.Comment: 10 pages. The final section was expande
    • 

    corecore