4 research outputs found

    Subtle pH variation around pH 4.0 affects aggregation kinetics and aggregate characteristics of recombinant human insulin

    Get PDF
    Insulin is a biotherapeutic protein, which, depending on environmental conditions such as pH, has been shown to form a large variety of aggregates with different structures and morphologies. This work focuses on the formation and characteristics of insulin particulates, dense spherical aggregates having diameters spanning from nanometre to low-micron size. An in-depth investigation of the system is obtained by applying a broad range of techniques for particle sizing and characterisation. An interesting observation was achieved regarding the formation kinetics and aggregate characteristics of the particulates; a subtle change in the pH from pH 4.1 to pH 4.3 markedly affected the kinetics of the particulate formation and led to different particulate sizes, either nanosized or micronsized particles. Also, a clear difference between the secondary structure of the protein particulates formed at the two pH values was observed, where the nanosized particulates had an increased content of aggregated β-structure compared to the micronsized particles. The remaining characteristics of the particles were identical for the two particulate populations. These observations highlight the importance of carefully studying the formulation design space and of knowing the impact of parameters such as pH on the aggregation to secure a drug product in control. Furthermore, the identification of particles only varying in few parameters, such as size, are considered highly valuable for studying the effect of particle features on the immunogenicity potential.Drug Delivery Technolog

    In vitro and in vivo immunogenicity assessment of protein aggregate characteristics

    No full text
    The immunogenicity risk of therapeutic protein aggregates has been extensively investigated over the past decades. While it is established that not all aggregates are equally immunogenic, the specific aggregate characteristics, which are most likely to induce an immune response, remain ambiguous. The aim of this study was to perform comprehensive in vitro and in vivo immunogenicity assessment of human insulin aggregates varying in size, structure and chemical modifications, while keeping other morphological characteristics constant. We found that flexible aggregates with highly altered secondary structure were most immunogenic in all setups, while compact aggregates with native-like structure were found to be immunogenic primarily in vivo. Moreover, sub-visible (1-100 µm) aggregates were found to be more immunogenic than sub-micron (0.1-1 µm) aggregates, while chemical modifications (deamidation, ethylation and covalent dimers) were not found to have any measurable impact on immunogenicity. The findings highlight the importance of utilizing aggregates varying in few characteristics for assessment of immunogenicity risk of specific morphological features and may provide a workflow for reliable particle analysis in biotherapeutics.Drug Delivery Technolog
    corecore