46 research outputs found

    Non-alcoholic fatty liver disease, and the underlying altered fatty acid metabolism, reveals brain hypoperfusion and contributes to the cognitive decline in APP/PS1 mice

    Get PDF
    Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease, is associated with cognitive decline in middle-aged adults, but the mechanisms underlying this association are not clear. We hypothesized that NAFLD would unveil the appearance of brain hypoperfusion in association with altered plasma and brain lipid metabolism. To test our hypothesis, amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mice were fed a standard diet or a high-fat, cholesterol and cholate diet, inducing NAFLD without obesity and hyperglycemia. The diet-induced NAFLD disturbed monounsaturated and polyunsaturated fatty acid (MUFAs, PUFAs) metabolism in the plasma, liver, and brain, and particularly reduced n-3 PUFAs levels. These alterations in lipid homeostasis were associated in the brain with an increased expression of Tnfalpha, Cox2, p21, and Nox2, reminiscent of brain inflammation, senescence, and oxidative stress. In addition, compared to wild-type (WT) mice, while brain perfusion was similar in APP/PS1 mice fed with a chow diet, NAFLD in APP/PS1 mice reveals cerebral hypoperfusion and furthered cognitive decline. NAFLD reduced plasma beta40- and beta42-amyloid levels and altered hepatic but not brain expression of genes involved in beta-amyloid peptide production and clearance. Altogether, our results suggest that in a mouse model of Alzheimer disease (AD) diet-induced NAFLD contributes to the development and progression of brain abnormalities through unbalanced brain MUFAs and PUFAs metabolism and cerebral hypoperfusion, irrespective of brain amyloid pathology that may ultimately contribute to the pathogenesis of AD

    Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth muscle cells in a site upstream of caspase-3

    Get PDF
    Intracellular signaling pathways that are involved in protection of vascular smooth muscle cells (VSMC) from apoptosis remain poorly understood. This study examines the effect of activators of cAMP/cGMP signaling on apoptosis in non-transfected VSMC and in VSMC transfected with c-myc (VSMC-MYC) or with its functional analogue, E1A-adenoviral protein (VSMC-E1A). Serum-deprived VSMC-E1A exhibited the highest apoptosis measured as the content of chromatin and low molecular weight DNA fragments, phosphatidylserine content in the outer surface of plasma membrane and caspase-3 activity (ten-, five-, four- and tenfold increase after 6 h of serum withdrawal, respectively). In VSMC-E1A, the addition of an activator of adenylate cyclase, forskolin, abolished chromatin cleavage, DNA laddering, caspase-3 activation and the appearance of morphologically-defined apoptotic cells triggered by 6 h of serum deprivation. In non-transfected VSMC and in VSMC-MYC, 6 h serum deprivation led to approximately six- and threefold activation of chromatin cleavage, respectively, that was also blocked by forskolin. In VSMC-E1A, inhibition of apoptosis was observed with other activators of cAMP signaling (cholera toxin, isoproterenol, adenosine, 8-Br-cAMP), whereas 6 h incubation with modulators of cGMP signaling (8-Br-cGMP, nitroprusside, atrial natriuretic peptide, L-NAME) did not affect the development of apoptotic machinery. The antiapoptotic effect of forskolin was abolished in 24 h of serum deprivation that was accompanied by normalization of intracellular cAMP content and protein kinase A (PKA) activity. Protection of VSMC-E1A from apoptosis by forskolin was blunted by PKA inhibitors (H-89 and KT5720), whereas transfection of cells with PKA catalytic subunit attenuated apoptosis triggered by serum withdrawal. The protection of VSMC-E1A by forskolin from apoptosis was insensitive to modulators of cytoskeleton assembly (cytochalasin B, colchicine). Neither acute (30 min) nor chronic (24 h) exposure of VSMC to forskolin modified basal and serum-induced phosphorylation of the MAP kinase ERK1/2. Thus, our results show that activation of cAMP signaling delays the development of apoptosis in serum-deprived VSMC at a site upstream of caspase-3 via activation of PKA and independently of cAMP-induced reorganization of the cytoskeleton network and the ERK1/2-terminated MAPK signaling cascade

    High Circulating Levels of ANGPTL2: Beyond a Clinical Marker of Systemic Inflammation

    No full text
    Angiopoietin-like 2 (ANGPTL2) is a proinflammatory protein belonging to the angiopoietin-like family. ANGPTL2 is secreted and detected in the systemic circulation. Different observational clinical studies reported that circulating levels of ANGPTL2 increase significantly in various chronic inflammatory diseases and showed associations between ANGPTL2 levels and diagnosis and/or prognosis of cardiovascular diseases, diabetes, chronic kidney disease, and various types of cancers. However, these studies did not address the following questions: (a) what are the sources of circulating ANGPTL2? (b) How and by which mechanisms an increase in circulating ANGPTL2 contributes to the pathogenesis of chronic inflammatory diseases? (c) Does an increase in circulating levels of ANGPTL2 measured in a well-defined chronic medical condition originate from a specific cell type? Mechanistic hypotheses have been proposed based on studies performed in mice and cultured cells, and proinflammatory, prooxidative, proangiogenic, proliferative, and antiapoptotic properties of ANGPTL2 have been reported. The aim of this review is to propose answers concerning the potential sources of circulating ANGPTL2 and its common pathological properties associated with various chronic inflammatory diseases and death in humans. We believe that high circulating ANGPTL2 levels are more than an inflammatory marker and may reflect the senescent cellular load of an individual

    Angptl2 is a Marker of Cellular Senescence: The Physiological and Pathophysiological Impact of Angptl2-Related Senescence

    No full text
    Cellular senescence is a cell fate primarily induced by DNA damage, characterized by irreversible growth arrest in an attempt to stop the damage. Senescence is a cellular response to a stressor and is observed with aging, but also during wound healing and in embryogenic developmental processes. Senescent cells are metabolically active and secrete a multitude of molecules gathered in the senescence-associated secretory phenotype (SASP). The SASP includes inflammatory cytokines, chemokines, growth factors and metalloproteinases, with autocrine and paracrine activities. Among hundreds of molecules, angiopoietin-like 2 (angptl2) is an interesting, although understudied, SASP member identified in various types of senescent cells. Angptl2 is a circulatory protein, and plasma angptl2 levels increase with age and with various chronic inflammatory diseases such as cancer, atherosclerosis, diabetes, heart failure and a multitude of age-related diseases. In this review, we will examine in which context angptl2 was identified as a SASP factor, describe the experimental evidence showing that angptl2 is a marker of senescence in vitro and in vivo, and discuss the impact of angptl2-related senescence in both physiological and pathological conditions. Future work is needed to demonstrate whether the senescence marker angptl2 is a potential clinical biomarker of age-related diseases

    Âge et stress oxydant

    No full text
    DiffĂ©rents mĂ©canismes cellulaires de rĂ©paration, de dĂ©fense et de maintien de l’homĂ©ostasie sont continuellement activĂ©s au cours de la vie. Ils permettent d’établir un Ă©quilibre temporaire face aux agressions successives endogĂšnes et exogĂšnes. Le principe d’hormesis

    Catechin Prevents Severe Dyslipidemia-Associated Changes in Wall Biomechanics of Cerebral Arteries in Ldlr-/-:Hapob(+/+) Mice and Improves Cerebral Blood Flow

    No full text
    Endothelial dysfunction and oxidative stress contribute to the atherosclerotic process that includes stiffening of large peripheral arteries. In contrast, our laboratory previously reported a paradoxical increase in cerebro-vascular compliance in LDLr(−/−):hApoB(+/+) atherosclerotic (ATX) mice (7). We hypothesized that prevention of cerebral artery endothelial dysfunction with a chronic dietary antioxidant intake would normalize the changes in cerebral artery wall structure and biomechanics and prevent the decline in basal cerebral blood flow associated with atherosclerosis. Three-month-old ATX mice were treated, or not, for 3 mo with the polyphenol (+)-catechin (CAT; 30 mg·kg(−1)·day(−1)) and compared with wild-type controls. In isolated, pressurized cerebral arteries from ATX mice, CAT prevented endothelial dysfunction (deterioration of endothelium-dependent, flow-mediated dilations; P < 0.05), the inward hypertrophic structural remodeling (increase in the wall-to-lumen ratio; P < 0.05), and the rise in cerebrovascular compliance (rightward shift of the stress-strain curve measured in passive conditions, reflecting mechanical properties of the arterial wall; P < 0.05). Doppler optical coherence tomography imaging in vivo confirmed these findings, showing that cerebral compliance was higher in ATX mice and normalized by CAT (P < 0.05). CAT also prevented basal cerebral hypoperfusion in ATX mice (P < 0.05). Active remodeling of the cerebrovascular wall in ATX mice was further suggested by the increase (P < 0.05) in pro-metalloproteinase-9 activity, which was normalized by CAT. We conclude that, by preserving the endothelial function, a chronic treatment with CAT prevents the deleterious effect of severe dyslipidemia on cerebral artery wall structure and biomechanical properties, contributing to preserving resting cerebral blood flow
    corecore