6,452 research outputs found

    The phonon dispersion of graphite by inelastic x-ray scattering

    Full text link
    We present the full in-plane phonon dispersion of graphite obtained from inelastic x-ray scattering, including the optical and acoustic branches, as well as the mid-frequency range between the KK and MM points in the Brillouin zone, where experimental data have been unavailable so far. The existence of a Kohn anomaly at the KK point is further supported. We fit a fifth-nearest neighbour force-constants model to the experimental data, making improved force-constants calculations of the phonon dispersion in both graphite and carbon nanotubes available.Comment: 7 pages; submitted to Phys. Rev.

    Extreme non-linear response of ultra-narrow optical transitions in cavity QED for laser stabilization

    Full text link
    We explore the potential of direct spectroscopy of ultra-narrow optical transitions of atoms localized in an optical cavity. In contrast to stabilization against a reference cavity, which is the approach currently used for the most highly stabilized lasers, stabilization against an atomic transition does not suffer from Brownian thermal noise. Spectroscopy of ultra-narrow optical transitions in a cavity operates in a very highly saturated regime in which non-linear effects such as bistability play an important role. From the universal behavior of the Jaynes-Cummings model with dissipation, we derive the fundamental limits for laser stabilization using direct spectroscopy of ultra-narrow atomic lines. We find that with current lattice clock experiments, laser linewidths of about 1 mHz can be achieved in principle, and the ultimate limitations of this technique are at the 1 μ\mu Hz level.Comment: 5 pages, 4 figure

    Ion observations from geosynchronous orbit as a proxy for ion cyclotron wave growth during storm times

    Get PDF
    [1] There is still much to be understood about the processes contributing to relativistic electron enhancements and losses in the radiation belts. Wave particle interactions with both whistler and electromagnetic ion cyclotron (EMIC) waves may precipitate or accelerate these electrons. This study examines the relation between EMIC waves and resulting relativistic electron flux levels after geomagnetic storms. A proxy for enhanced EMIC waves is developed using Los Alamos National Laboratory Magnetospheric Plasma Analyzer plasma data from geosynchronous orbit in conjunction with linear theory. In a statistical study using superposed epoch analysis, it is found that for storms resulting in net relativistic electron losses, there is a greater occurrence of enhanced EMIC waves. This is consistent with the hypothesis that EMIC waves are a primary mechanism for the scattering of relativistic electrons and thus cause losses of such particles from the magnetosphere

    Boundary effects in finite size plasmonic crystals: Focusing and routing of plasmonic beams for optical communications

    Get PDF
    Plasmonic crystals, which consist of periodic arrangements of surface features at a metal-dielectric interface, allow the manipulation of optical information in the form of surface plasmon polaritons. Here we investigate the excitation and propagation of plasmonic beams in and around finite size plasmonic crystals at telecom wavelengths, highlighting the effects of the crystal boundary shape and illumination conditions. Significant differences in broad plasmonic beam generation by crystals of different shapes are demonstrated, while for narrow beams, the propagation onto the smooth metal film is less sensitive to the crystal boundary shape. We show that by controlling the boundary shape, the size and the excitation beam parameters, directional control of propagating plasmonic modes and associated beam parameters such as angular beam splitting, focusing power and beam width can be efficiently achieved. This provides a promising route for robust and alignment-independent integration of plasmonic crystals with optical communication components

    Raman modes of the deformed single-wall carbon nanotubes

    Full text link
    With the empirical bond polarizability model, the nonresonant Raman spectra of the chiral and achiral single-wall carbon nanotubes (SWCNTs) under uniaxial and torsional strains have been systematically studied by \textit{ab initio} method. It is found that both the frequencies and the intensities of the low-frequency Raman active modes almost do not change in the deformed nanotubes, while their high-frequency part shifts obviously. Especially, the high-frequency part shifts linearly with the uniaxial tensile strain, and two kinds of different shift slopes are found for any kind of SWCNTs. More interestingly, new Raman peaks are found in the nonresonant Raman spectra under torsional strain, which are explained by a) the symmetry breaking and b) the effect of bond rotation and the anisotropy of the polarizability induced by bond stretching

    Evidence of breakdown of the spin symmetry in diluted 2D electron gases

    Full text link
    Recent claims of an experimental demonstration of spontaneous spin polarisation in dilute electron gases \cite{young99} revived long standing theoretical discussions \cite{ceper99,bloch}. In two dimensions, the stabilisation of a ferromagnetic fluid might be hindered by the occurrence of the metal-insulator transition at low densities \cite{abra79}. To circumvent localisation in the two-dimensional electron gas (2DEG) we investigated the low populated second electron subband, where the disorder potential is mainly screened by the high density of the first subband. This letter reports on the breakdown of the spin symmetry in a 2DEG, revealed by the abrupt enhancement of the exchange and correlation terms of the Coulomb interaction, as determined from the energies of the collective charge and spin excitations. Inelastic light scattering experiments and calculations within the time-dependent local spin-density approximation give strong evidence for the existence of a ferromagnetic ground state in the diluted regime.Comment: 4 pages, 4 figures, Revte
    corecore