5 research outputs found

    Neurological signs in 23 dogs with suspected rostral cerebellar ischaemic stroke

    Get PDF
    Background: In dogs with ischaemic stroke, a very common site of infarction is the cerebellum. The aim of this study was to characterise neurological signs in relation to infarct topography in dogs with suspected cerebellar ischaemic stroke and to report short-term outcome confined to the hospitalisation period. A retrospective multicentre study of dogs with suspected cerebellar ischaemic stroke examined from 2010–2015 at five veterinary referral hospitals was performed. Findings from clinical, neurological, and paraclinical investigations including magnetic resonance imaging were assessed. Results: Twenty-three dogs, 13 females and 10 males with a median age of 8 years and 8 months, were included in the study. The Cavalier King Charles Spaniel (n = 9) was a commonly represented breed. All ischaemic strokes were located to the vascular territory of the rostral cerebellar artery including four extensive and 19 limited occlusions. The most prominent neurological deficits were gait abnormalities (ataxia with hypermetria n = 11, ataxia without hypermetria n = 4, non-ambulatory n = 6), head tilt (n = 13), nystagmus (n = 8), decreased menace response (n = 7), postural reaction deficits (n = 7), and proprioceptive deficits (n = 5). Neurological signs appeared irrespective of the infarct being classified as extensive or limited. All dogs survived and were discharged within 1–10 days of hospitalisation. Conclusions: Dogs affected by rostral cerebellar ischaemic stroke typically present with a collection of neurological deficits characterised by ataxia, head tilt, and nystagmus irrespective of the specific cerebellar infarct topography. In dogs with peracute to acute onset of these neurological deficits, cerebellar ischaemic stroke should be considered an important differential diagnosis, and neuroimaging investigations are indicated. Although dogs are often severely compromised at presentation, short-term prognosis is excellent and rapid clinical improvement may be observed within the first week following the ischaemic stroke

    Spontaneous ischaemic stroke lesions in a dog brain: neuropathological characterisation and comparison to human ischaemic stroke

    Get PDF
    Abstract Background Dogs develop spontaneous ischaemic stroke with a clinical picture closely resembling human ischaemic stroke patients. Animal stroke models have been developed, but it has proved difficult to translate results obtained from such models into successful therapeutic strategies in human stroke patients. In order to face this apparent translational gap within stroke research, dogs with ischaemic stroke constitute an opportunity to study the neuropathology of ischaemic stroke in an animal species. Case presentation A 7\ua0years and 8\ua0months old female neutered Rottweiler dog suffered a middle cerebral artery infarct and was euthanized 3\ua0days after onset of neurological signs. The brain was subjected to histopathology and immunohistochemistry. Neuropathological changes were characterised by a pan-necrotic infarct surrounded by peri-infarct injured neurons and reactive microglia/macrophages and astrocytes. Conclusions The neuropathological changes reported in the present study were similar to findings in human patients with ischaemic stroke. The dog with spontaneous ischaemic stroke is of interest as a complementary spontaneous animal model for further neuropathological studies

    Neural Derivates of Canine Induced Pluripotent Stem Cells-Like Cells From a Mild Cognitive Impairment Dog

    Get PDF
    Domestic dogs are superior models for translational medicine due to greater anatomical and physiological similarities with humans than rodents, including hereditary diseases with human equivalents. Particularly with respect to neurodegenerative medicine, dogs can serve as a natural, more relevant model of human disease compared to transgenic rodents. Herein we report attempts to develop a canine-derived in vitro model for neurodegenerative diseases through the generation of induced pluripotent stem cells from a 14-year, 9-month-old female West Highland white terrier with mild cognitive impairment (MCI). Canine induced pluripotent stem cells-like cells (ciPSCLC) were generated using human OSKM and characterized by positive expression of pluripotency markers. Due to inefficient viral vector silencing we refer to them as ciPSCLCs. Subsequently, the ciPSCLC were subjected to neural induction according to two protocols both yielding canine neural progenitor cells (cNPCs), which expressed typical NPC markers. The cNPCs were cultured in neuron differentiation media for 3 weeks, resulting in the derivation of morphologically impaired neurons as compared to iPSC-derived human counterparts generated in parallel. The apparent differences encountered in this study regarding the neural differentiation potential of ciPSCLC reveals challenges and new perspectives to consider before using the canine model in translational neurological studies
    corecore