3 research outputs found

    Buckling Thin Disks and Ribbons with Non-Euclidean Metrics

    Get PDF
    I consider the problem of a thin membrane on which a metric has been prescribed, for example by lithographically controlling the local swelling properties of a polymer thin film. While any amount of swelling can be accommodated locally, geometry prohibits the existence of a global strain-free configuration. To study this geometrical frustration, I introduce a perturbative approach. I compute the optimal shape of an annular, thin ribbon as a function of its width. The topological constraint of closing the ribbon determines a relationship between the mean curvature and number of wrinkles that prevents a complete relaxation of the compression strain induced by swelling and buckles the ribbon out of the plane. These results are then applied to thin, buckled disks, where the expansion works surprisingly well. I identify a critical radius above which the disk in-plane strain cannot be relaxed completely.Comment: 6 pages, 5 figures; lengthened to clarify previously confusing issues. To appear in EP

    Graphene as an electronic membrane

    Full text link
    Experiments are finally revealing intricate facts about graphene which go beyond the ideal picture of relativistic Dirac fermions in pristine two dimensional (2D) space, two years after its first isolation. While observations of rippling added another dimension to the richness of the physics of graphene, scanning single electron transistor images displayed prevalent charge inhomogeneity. The importance of understanding these non-ideal aspects cannot be overstated both from the fundamental research interest since graphene is a unique arena for their interplay, and from the device applications interest since the quality control is a key to applications. We investigate the membrane aspect of graphene and its impact on the electronic properties. We show that curvature generates spatially varying electrochemical potential. Further we show that the charge inhomogeneity in turn stabilizes ripple formation.Comment: 6 pages, 11 figures. Updated version with new results about the re-hybridization of the electronic orbitals due to rippling of the graphene sheet. The re-hybridization adds the next-to-nearest neighbor hopping effect discussed in the previous version. New reference to recent STM experiments that give support to our theor

    Rippling of graphene

    No full text
    We show that ripples observed in free-standing graphene sheets can be explained as a consequence of adsorbed OH molecules sitting on random sites. The adsorbates cause the bonds between carbon atoms to lengthen slightly. Static buckles then result from a mechanism like the one that leads to buckling of leaves. Buckles caused by roughly 20% coverage of adsorbates are consistent with experimental observations
    corecore