6,522 research outputs found

    Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography

    Get PDF
    We have deformed basalt from Mount Etna (Italy) in triaxial compression tests under an effective confining pressure representative of conditions under a volcanic edifice (40 MPa), and at a constant strain rate of 5 similar to 10(-6) s(-1). Despite containing a high level of pre-existing microcrack damage, Etna basalt retains a high strength of 475 MPa. We have monitored the complete deformation cycle through contemporaneous measurements of axial strain, pore volume change, compressional wave velocity change and acoustic emission (AE) output. We have been able to follow the complete evolution of the throughgoing shear fault without recourse to any artificial means of slowing the deformation. Locations of AE events over time yields an estimate of the fault propagation velocity of between 2 and 4 mm. s(-1). We also find excellent agreement between AE locations and post-test images from X-ray microtomography scanning that delineates deformation zone architecture

    Imaging compaction band propagation in Diemelstadt sandstone using acoustic emission locations

    Get PDF
    We report results from a conventional triaxial test performed on a specimen of Diemelstadt sandstone under an effective confining pressure of 110 MPa; a value sufficient to induce compaction bands. The maximum principal stress was applied normal to the visible bedding so that compaction bands propagated parallel to bedding. The spatio-temporal distribution of acoustic emission events greater than 40 dB in amplitude, and associated with the propagation of the first compaction band, were located in 3D, to within +/- 2 mm, using a Hyperion Giga-RAM recorder. Event magnitudes were used to calculate the seismic b- value at intervals during band growth. Results show that compaction bands nucleate at the specimen edge and propagate across the sample at approximately 0.08 mm s(-1). The seismic b-value does not vary significantly during deformation, suggesting that compaction band growth is characterized by small scale cracking that does not change significantly in scale

    Vacuolating cytotoxin (vacA) alleles of Helicobacter pylori comprise two geographically widespread types, m1 and m2, and have evolved through limited recombination

    Get PDF
    Vacuolating cytotoxin (vacA) alleles of Helicobacter pylori vary, particularly in their mid region (which may be type m1 or m2) and their signal peptide coding region (type s1 or s2). We investigated nucleotide diversity among vacA alleles in strains from several locales in Asia, South America, and the USA. Phylogenetic analysis of vacA mid region sequences from 18 strains validated the division into two main groups (m1 and m2) and showed further significant divisions within these groups. Informative site analysis demonstrated one example of recombination between m1 and m2 alleles, and several examples of recombination among alleles within these groups. Recombination was not sufficiently extensive to destroy phylogenetic structure entirely. Synonymous nucleotide substitution rates were markedly different between regions of vacA, suggesting different evolutionary divergence times and implying horizontal transfer of genetic elements within vacA. Non-synonymous/synonymous rate ratios were greater between m1 and m2 sequences than among m1 sequences, consistent with m1 and m2 alleles encoding functions fitting strains for slightly different ecological niches

    Altered functional and structural brain network organization in autism.

    Get PDF
    Structural and functional underconnectivity have been reported for multiple brain regions, functional systems, and white matter tracts in individuals with autism spectrum disorders (ASD). Although recent developments in complex network analysis have established that the brain is a modular network exhibiting small-world properties, network level organization has not been carefully examined in ASD. Here we used resting-state functional MRI (n = 42 ASD, n = 37 typically developing; TD) to show that children and adolescents with ASD display reduced short and long-range connectivity within functional systems (i.e., reduced functional integration) and stronger connectivity between functional systems (i.e., reduced functional segregation), particularly in default and higher-order visual regions. Using graph theoretical methods, we show that pairwise group differences in functional connectivity are reflected in network level reductions in modularity and clustering (local efficiency), but shorter characteristic path lengths (higher global efficiency). Structural networks, generated from diffusion tensor MRI derived fiber tracts (n = 51 ASD, n = 43 TD), displayed lower levels of white matter integrity yet higher numbers of fibers. TD and ASD individuals exhibited similar levels of correlation between raw measures of structural and functional connectivity (n = 35 ASD, n = 35 TD). However, a principal component analysis combining structural and functional network properties revealed that the balance of local and global efficiency between structural and functional networks was reduced in ASD, positively correlated with age, and inversely correlated with ASD symptom severity. Overall, our findings suggest that modeling the brain as a complex network will be highly informative in unraveling the biological basis of ASD and other neuropsychiatric disorders

    A Multivariate Surface-Based Analysis of the Putamen in Premature Newborns: Regional Differences within the Ventral Striatum

    Get PDF
    Many children born preterm exhibit frontal executive dysfunction, behavioral problems including attentional deficit/hyperactivity disorder and attention related learning disabilities. Anomalies in regional specificity of cortico-striato-thalamo-cortical circuits may underlie deficits in these disorders. Nonspecific volumetric deficits of striatal structures have been documented in these subjects, but little is known about surface deformation in these structures. For the first time, here we found regional surface morphological differences in the preterm neonatal ventral striatum. We performed regional group comparisons of the surface anatomy of the striatum (putamen and globus pallidus) between 17 preterm and 19 term-born neonates at term-equivalent age. We reconstructed striatal surfaces from manually segmented brain magnetic resonance images and analyzed them using our in-house conformal mapping program. All surfaces were registered to a template with a new surface fluid registration method. Vertex-based statistical comparisons between the two groups were performed via four methods: univariate and multivariate tensor-based morphometry, the commonly used medial axis distance, and a combination of the last two statistics. We found statistically significant differences in regional morphology between the two groups that are consistent across statistics, but more extensive for multivariate measures. Differences were localized to the ventral aspect of the striatum. In particular, we found abnormalities in the preterm anterior/inferior putamen, which is interconnected with the medial orbital/prefrontal cortex and the midline thalamic nuclei including the medial dorsal nucleus and pulvinar. These findings support the hypothesis that the ventral striatum is vulnerable, within the cortico-stiato-thalamo-cortical neural circuitry, which may underlie the risk for long-term development of frontal executive dysfunction, attention deficit hyperactivity disorder and attention-related learning disabilities in preterm neonates. © 2013 Shi et al
    • …
    corecore