42,246 research outputs found

    Transition from glass to graphite in manufacture of composite aircraft structure

    Get PDF
    The transition from fiberglass reinforced plastic composites to graphite reinforced plastic composites is described. Structural fiberglass design and manufacturing background are summarized. How this experience provides a technology base for moving into graphite composite secondary structure and then to composite primary structure is considered. The technical requirements that must be fulfilled in the transition from glass to graphite composite structure are also included

    Variability in GRBs - A Clue

    Full text link
    We show that external shocks cannot produce a variable GRB, unless they are produced by an extremely narrow jets (angular opening of < ~10^{-4}) or if only a small fraction of the shell emits the radiation and the process is very inefficient. Internal shocks can produce the observed complex temporal structure provided that the source itself is variable. In this case, the observed temporal structure reflects the activity of the ``inner engine'' that drives the bursts. This sets direct constraints on it.Comment: 15 page latex file with 5 PS figure. Complete uuencoded compressed PS file is available at ftp://shemesh.fiz.huji.ac.il or at http://shemesh.fiz.huji.ac.il/papers/SaP_aclue.u

    Three-body breakup within the fully discretized Faddeev equations

    Full text link
    A novel approach is developed to find the three-body breakup amplitudes and cross sections within the modified Faddeev equation framework. The method is based on the lattice-like discretization of the three-body continuum with a three-body stationary wave-packet basis in momentum space. The approach makes it possible to simplify drastically all the three- and few-body breakup calculations due to discrete wave-packet representations for the few-body continuum and simultaneous lattice representation for all the scattering operators entering the integral equation kernels. As a result, the few-body breakup can be treated as a particular case of multi-channel scattering in which part of the channels represents the true few-body continuum states. As an illustration for the novel approach, an accurate calculations for the three-body breakup process n+dn+n+pn+d\to n+n+p with non-local and local NNNN interactions are calculated. The results obtained reproduce nicely the benchmark calculation results using the traditional Faddeev scheme which requires much more tedious and time-consuming calculations.Comment: 17 pages, 13 figure

    Equation of state and opacities for hydrogen atmospheres of magnetars

    Full text link
    The equation of state and radiative opacities of partially ionized, strongly magnetized hydrogen plasmas, presented in a previous paper [ApJ 585, 955 (2003), astro-ph/0212062] for the magnetic field strengths 8.e11 G < B < 3.e13 G, are extended to the field strengths 3.e13 G < B < 1.e15 G, relevant for magnetars. The first- and second-order thermodynamic functions and radiative opacities are calculated and tabulated for 5.e5 < T < 4.e7 K in a wide range of densities. We show that bound-free transitions give an important contribution to the opacities in the considered range of B in the outer neutron-star atmosphere layers. Unlike the case of weaker fields, bound-bound transitions are unimportant.Comment: 7 pages, 6 figures, LaTeX using emulateapj.cls (included). Accepted by Ap

    Two-channel point-contact tunneling theory of superconductors

    Get PDF
    We introduce a two-channel tunneling model to generalize the widely used BTK theory of point-contact conductance between a normal metal contact and superconductor. Tunneling of electrons can occur via localized surface states or directly, resulting in a Fano resonance in the differential conductance G=dI/dVG=dI/dV. We present an analysis of GG within the two-channel model when applied to soft point-contacts between normal metallic silver particles and prototypical heavy-fermion superconductors CeCoIn5_5 and CeRhIn5_5 at high pressures. In the normal state the Fano line shape of the measured GG is well described by a model with two tunneling channels and a large temperature-independent background conductance. In the superconducting state a strongly suppressed Andreev reflection signal is explained by the presence of the background conductance. We report Andreev signal in CeCoIn5_5 consistent with standard dx2y2d_{x^2-y^2}-wave pairing, assuming an equal mixture of tunneling into [100] and [110] crystallographic interfaces. Whereas in CeRhIn5_5 at 1.8 and 2.0 GPa the signal is described by a dx2y2d_{x^2-y^2}-wave gap with reduced nodal region, i.e., increased slope of the gap opening on the Fermi surface. A possibility is that the shape of the high-pressure Andreev signal is affected by the proximity of a line of quantum critical points that extends from 1.75 to 2.3 GPa, which is not accounted for in our description of the heavy-fermion superconductor.Comment: 13 pages, 13 figure

    Positronium collapse and the maximum magnetic field in pure QED

    Get PDF
    A maximum value for the magnetic field is determined, which provides the full compensation of the positronium rest mass by the binding energy in the maximum symmetry state and disappearance of the energy gap separating the electron-positron system from the vacuum. The compensation becomes possible owing to the falling to the center phenomenon. The maximum magnetic field may be related to the vacuum and describe its structure.Comment: 4 pages, accepted for publication in Phys. Rev. Letter

    Weak Localization Thickness Measurements of Si:P Delta-Layers

    Full text link
    We report on our results for the characterization of Si:P delta-layers grown by low temperature molecular beam epitaxy. Our data shows that the effective thickness of a delta-layer can be obtained through a weak localization analysis of electrical transport measurements performed in perpendicular and parallel magnetic fields. An estimate of the diffusivity of phosphorous in silicon is obtained by applying this method to several samples annealed at 850 Celsius for intervals of zero to 15 minutes. With further refinements, this may prove to be the most precise method of measuring delta-layer widths developed to date, including that of Secondary Ion Mass Spectrometry analysis

    Photon Propagation Around Compact Objects and the Inferred Properties of Thermally Emitting Neutron Stars

    Get PDF
    Anomalous X-ray pulsars, compact non-pulsing X-ray sources in supernova remnants, and X-ray bursters are three distinct types of sources for which there are viable models that attribute their X-ray emission to thermal emission from the surface of a neutron star. Inferring the surface area of the emitting regions in such systems is crucial in assessing the viability of different models and in providing bounds on the radii of neutron stars. We show that the inferred areas of the emitting regions may be over- or under-estimated by a factor of <=2, because of the geometry of the system and general relativistic light deflection, combined with the effects of phase averaging. Such effects make the determination of neutron-star radii uncertain, especially when compared to the ~5% level required for constraining the equation of state of neutron-star matter. We also note that, for a given spectral shape, the inferred source luminosities and pulse fractions are anticorrelated because they depend on the same properties of the emitting regions, namely their sizes and orientations, i.e., brighter sources have on average weaker pulsation amplitudes than fainter sources. We argue that this property can be used as a diagnostic tool in distinguishing between different spectral models. As an example, we show that the high inferred pulse fraction and brightness of the pulsar RXS J1708-40 are inconsistent with isotropic thermal emission from a neutron-star surface. Finally, we discuss the implication of our results for surveys in the soft X-rays for young, cooling neutron stars in supernova remnants and show that the absence of detectable pulsations from the compact source at the center of Cas A (at a level of >=30%) is not a strong argument againts its identification with a spinning neutron star.Comment: 6 pages, 6 figures, to appear in the Astrophysical Journal; minor change

    Superconducting and Normal State Properties of Heavily Hole-Doped Diamond

    Full text link
    We report measurements of the specific heat, Hall effect, upper critical field and resistivity on bulk, B-doped diamond prepared by reacting amorphous B and graphite under high-pressure/high-temperature conditions. These experiments establish unambiguous evidence for bulk superconductivity and provide a consistent set of materials parameters that favor a conventional, weak coupling electron-phonon interpretation of the superconducting mechanism at high hole doping.Comment: 10 pages, 3 figure
    corecore