53,360 research outputs found

    Reversal Modes of Simulated Iron Nanopillars in an Obliquely Oriented Field

    Full text link
    Stochastic micromagnetic simulations are employed to study switching in three-dimensional magnetic nanopillars exposed to highly misaligned fields. The switching appears to proceed through two different decay modes, characterized by very different average lifetimes and different average values of the transverse magnetization components.Comment: 3 pages, 4 figure

    Nonparametric maximum likelihood estimation of probability densities by penalty function methods

    Get PDF
    When it is known a priori exactly to which finite dimensional manifold the probability density function gives rise to a set of samples, the parametric maximum likelihood estimation procedure leads to poor estimates and is unstable; while the nonparametric maximum likelihood procedure is undefined. A very general theory of maximum penalized likelihood estimation which should avoid many of these difficulties is presented. It is demonstrated that each reproducing kernel Hilbert space leads, in a very natural way, to a maximum penalized likelihood estimator and that a well-known class of reproducing kernel Hilbert spaces gives polynomial splines as the nonparametric maximum penalized likelihood estimates

    Reaction cross-section predictions for nucleon induced reactions

    Full text link
    A microscopic calculation of the optical potential for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all the particle-hole (p-h) excitation states in the target and to all relevant pickup channels. These p-h states may be regarded as doorway states through which the flux flows to more complicated configurations, and to long-lived compound nucleus resonances. We calculated the reaction cross sections for the nucleon induced reactions on the targets 40,48^{40,48}Ca, 58^{58}Ni, 90^{90}Zr and 144^{144}Sm using the QRPA description of target excitations, coupling to all inelastic open channels, and coupling to all transfer channels corresponding to the formation of a deuteron. The results of such calculations were compared to predictions of a well-established optical potential and with experimental data, reaching very good agreement. The inclusion of couplings to pickup channels were an important contribution to the absorption. For the first time, calculations of excitations account for all of the observed reaction cross-sections, at least for incident energies above 10 MeV.Comment: 6 pages, 6 figures. Submitted to INPC 2010 Conference Proceeding

    Discovery of a Probable Physical Triple Quasar

    Get PDF
    We report the discovery of the first known probable case of a physical triple quasar (not a gravitational lens). A previously known double system, QQ 1429-008 at z = 2.076, is shown to contain a third, fainter QSO component at the same redshift within the measurement errors. Deep optical and IR imaging at the Keck and VLT telescopes has failed to reveal a plausible lensing galaxy group or a cluster, and moreover, we are unable to construct any viable lensing model which could lead to the observed distribution of source positions and relative intensities of the three QSO image components. Furthermore, there are hints of differences in broad-band spectral energy distributions of different components, which are more naturally understood if they are physically distinct AGN. Therefore, we conclude that this system is most likely a physical triple quasar, the first such close QSO grouping known at any redshift. The projected component separations in the restframe are ~ 30 - 50 kpc for the standard concordance cosmology, typical of interacting galaxy systems. The existence of this highly unusual system supports the standard picture in which galaxy interactions lead to the onset of QSO activity.Comment: Submitted to ApJL, LaTeX, 13 pages, 4 eps figures, all include

    Two Modes of Magnetization Switching in a Simulated Iron Nanopillar in an Obliquely Oriented Field

    Full text link
    Finite-temperature micromagnetics simulations are employed to study the magnetization-switching dynamics driven by a field applied at an angle to the long axis of an iron nanopillar. A bi-modal distribution in the switching times is observed, and evidence for two competing modes of magnetization-switching dynamics is presented. For the conditions studied here, temperature T=20T = 20 K and the reversal field 3160 Oe at an angle of 75∘^\circ to the long axis, approximately 70% of the switches involve unstable decay (no free-energy barrier) and 30% involve metastable decay (a free-energy barrier is crossed). The latter are indistinguishable from switches which are constrained to start at a metastable free-energy minimum. Competition between unstable and metastable decay could greatly complicate applications involving magnetization switches near the coercive field.Comment: 19 pages, 7 figure

    High energy galactic gamma radiation from cosmic rays concentrated in spiral arms

    Get PDF
    A model for the emission of high energy ( 100 MeV) gamma rays from the galactic disk was developed and compared to recent SAS-2 observations. In the calculation, it is assumed that (1) the high energy galactic gamma rays result primarily from the interaction of cosmic rays with galactic matter; (2) on the basis of theoretical and experimental arguments the cosmic ray density is proportional to the matter density on the scale of galactic arms; and (3) the matter in the galaxy, atomic and molecular, is distributed in a spiral pattern consistent with density wave theory and the experimental data on the matter distribution

    SAS-2 observations of the galactic gamma radiation from the Vela region

    Get PDF
    Data from a scan of the galactic plane by the SAS-2 high energy gamma ray experiment in the region 250 deg l2 290 deg show a statistically-significant excess over the general radiation from the galactic plane for gamma radiation of energy 100 MeV in the region 260 deg l2 270 deg and -7.5 deg b2 0 deg. If the enhanced gamma radiation results from interactions of cosmic rays with galactic matter, as the energy spectrum suggests, it seems reasonable to associate the enhancement with large scale galactic features, such as spiral arm segments in that direction, or with the region surrounding the Vela supernova remnant, with which PSR 0833-45 is associated. If the excess is attributed to cosmic rays released from this supernova interacting with the interstellar matter in that region, then on the order of 3.10 to the 50th power ergs would be released by that supernova in the form of cosmic rays

    SAS-2 observations of the high energy gamma radiation from the Vela region

    Get PDF
    Data from a scan of the galactic plane by the SAS-B high energy gamma ray experiment in the region 250 deg smaller than 12 smaller than 290 deg show a statistically significant excess over the general radiation from the galactic plane for gamma radiation of energy larger than 100 MeV. If the enhanced gamma radiation results from interactions of cosmic rays with galactic matter, as the energy spectrum suggests, it seems reasonable to associate the enhancement with large scale galactic features, such as spiral arm segments in that direction, or with the region surrounding the Vela supernova remnant with which PSR 0833-45 is associated. If the excess is attributed to cosmic rays released from the supernova interacting with the interstellar matter in that region, than on the order of 3 x 10 to the 50th power ergs would have been released by that supernova in the form of cosmic rays

    Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double-continuum of a plasmonic metamolecule

    Get PDF
    Coupling between tuneable broadband modes of an array of plasmonic metamolecules and a vibrational mode of carbonyl bond of poly(methyl methacrylate) is shown experimentally to produce a Fano resonance, which can be tuned in situ by varying the polarization of incident light. The interaction between the plasmon modes and the molecular resonance is investigated using both rigorous electromagnetic calculations and a quantum mechanical model describing the quantum interference between a discrete state and two continua. The predictions of the quantum mechanical model are in good agreement with the experimental data and provide an intuitive interpretation, at the quantum level, of the plasmon-molecule coupling
    • …
    corecore