7,274 research outputs found

    Conformational Bias in 2\u27-Selenium-Modified Nucleosides and the Effect on Helical Structure and Extracellular Recombinant Protein Production: Current Systems and Applications

    Get PDF
    Part One. X-ray crystallography has benefited from the synthetic introduction of selenium to different positions within nucleic acids by easing the solving of the phase problem. Interestingly, its addition to the 2\u27 position of the ribose ring also significantly enhances crystal formation. This phenomenon was investigated to describe the effect of selenium-based and other 2\u27 modifications to the ribose ring of nucleosides in solution, as well as the incorporation of the selenium-modified nucleotides into a helical structure. This work correlates the difference in conformation propensity between the selenium containing nucleosides and oligomers towards a rationale behind the enhanced crystal forming behavior. Part Two. Recombinant protein production is a critical tool in laboratories and industries, and inducing extracellular transport of these products to the culture medium shows potential for improving cases where the yields are not sufficient in quality or quantity. This review incorporates current practices and systems with future perspectives

    COMMUNITY SUPPORTED AGRICULTURE: FILLING A NICHE MARKET

    Get PDF
    In less than a decade, the number of Community Supported Agriculture (CSA) projects has grown to more than 400. Our research suggests that CSA shareholders' social objectives dominate their decision to join. Standard economic objectives and "club-related" objectives contribute to the decision, but are clearly secondary. Our research also suggests the CSA movement will continue to grow. Its emphasis on social objectives, its inability to supply food year around, and the ongoing development of size-neutral organic technologies, however, will probably keep it from becoming a major market channel in the next century.Agribusiness,

    A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Get PDF
    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments

    Two Conditions under which WDM Networks are Rearrangeably Nonblocking without Wavelength Interchangers

    Get PDF
    Any network’s blocking characteristic depends on its path diversity. WDM networks have path diversity in the space division if the network’s topology is rich in alternate routes and in the wavelength division if the network’s links have many wavelengths or can interchange wavelengths at some nodes. This paper shows that this costly wavelength interchange is not needed if the network’s spatial topology is suffi-ciently rich, and shows that this spatial richness is defined by the classic Clos inequalities

    Computer codes for the evaluation of thermodynamic and transport properties for equilibrium air to 30000 K

    Get PDF
    The computer codes developed here provide self-consistent thermodynamic and transport properties for equilibrium air for temperatures from 500 to 30000 K over a temperature range of 10 (exp -4) to 10 (exp -2) atm. These properties are computed through the use of temperature dependent curve fits for discrete values of pressure. Interpolation is employed for intermediate values of pressure. The curve fits are based on mixture values calculated from an 11-species air model. Individual species properties used in the mixture relations are obtained from a recent study by the present authors. A review and discussion of the sources and accuracy of the curve fitted data used herein are given in NASA RP 1260

    Computer codes for the evaluation of thermodynamic properties, transport properties, and equilibrium constants of an 11-species air model

    Get PDF
    The computer codes developed provide data to 30000 K for the thermodynamic and transport properties of individual species and reaction rates for the prominent reactions occurring in an 11-species nonequilibrium air model. These properties and the reaction-rate data are computed through the use of curve-fit relations which are functions of temperature (and number density for the equilibrium constant). The curve fits were made using the most accurate data believed available. A detailed review and discussion of the sources and accuracy of the curve-fitted data used herein are given in NASA RP 1232

    Regulation of synaptic connectivity: levels of fasciclin II influence synaptic growth in the Drosophila CNS

    Get PDF
    Much of our understanding of synaptogenesis comes from studies that deal with the development of the neuromuscular junction (NMJ). Although well studied, it is not clear how far the NMJ represents an adequate model for the formation of synapses within the CNS. Here we investigate the role of Fasciclin II (Fas II) in the development of synapses between identified motor neurons and cholinergic interneurons in the CNS of Drosophila. Fas II is a neural cell adhesion molecule homolog that is involved in both target selection and synaptic plasticity at the NMJ in Drosophila. In this study, we show that levels of Fas II are critical determinants of synapse formation and growth in the CNS. The initial establishment of synaptic contacts between these identified neurons is seemingly independent of Fas II. The subsequent proliferation of these synaptic connections that occurs postembryonically is, in contrast, significantly retarded by the absence of Fas II. Although the initial formation of synaptic connectivity between these neurons is seemingly independent of Fas II, we show that their formation is, nevertheless, significantly affected by manipulations that alter the relative balance of Fas II in the presynaptic and postsynaptic neurons. Increasing expression of Fas II in either the presynaptic or postsynaptic neurons, during embryogenesis, is sufficient to disrupt the normal level of synaptic connectivity that occurs between these neurons. This effect of Fas II is isoform specific and, moreover, phenocopies the disruption to synaptic connectivity observed previously after tetanus toxin light chain-dependent blockade of evoked synaptic vesicle release in these neurons

    Implementation of a Blowing Boundary Condition in the LAURA Code

    Get PDF
    Preliminary steps toward modeling a coupled ablation problem using a finite-volume Navier-Stokes code (LAURA) are presented in this paper. Implementation of a surface boundary condition with mass transfer (blowing) is described followed by verification and validation through comparisons with analytic results and experimental data. Application of the code to a carbon-nosetip ablation problem is demonstrated and the results are compared with previously published data. It is concluded that the code and coupled procedure are suitable to support further ablation analyses and studies

    A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Get PDF
    Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature
    corecore