1,437 research outputs found

    Efficiency considerations in the construction of interpolated potential energy surfaces for the calculation of quantum observables by diffusion Monte Carlo

    No full text
    A modified Shepard interpolation scheme is used to construct global potential energy surfaces (PES) in order to calculate quantum observables--vibrationally averaged internal coordinates, fully anharmonic zero-point energies and nuclear radial distribution functions--for a prototypical loosely bound molecular system, the water dimer. The efficiency of PES construction is examined with respect to (a) the method used to sample configurational space, (b) the method used to choose which points to add to the PES data set, and (c) the use of either a one- or two-part weight function. The most efficient method for constructing the PES is found to require a quantum sampling regime, a combination of both h-weight and rms methods for choosing data points and use of the two-part weight function in the interpolation. Using this regime, the quantum diffusion Monte Carlo zero-point energy converges to the exact result within addition of 50 data points. The vibrationally averaged O-O distance and O-O radial distribution function, however, converge more slowly and require addition of over 500 data points. The methods presented here are expected to be applicable to both other loosely bound complexes as well as tightly bound molecular species. When combined with high quality ab initio calculations, these methods should be able to accurately characterize the PES of such species.D.L.C. would like to acknowledge the financial support of an Australian Postgraduate Research Award. This work has also been supported by Large Grant No. A00104447 from the Australian Research Council and by grants of computer time from the Australian Partnership in Advanced Computing (APAC) National Merit Allocation Scheme

    A classical trajectory study of the photodissociation of T₁ acetaldehyde: the transition from impulsive to statistical dynamics

    No full text
    Previous experimental and theoretical studies of the radical dissociation channel of T(1) acetaldehyde show conflicting behavior in the HCO and CH(3) product distributions. To resolve these conflicts, a full-dimensional potential-energy surface for the dissociation of CH(3)CHO into HCO and CH(3) fragments over the barrier on the T(1) surface is developed based on RO-CCSD(T)/cc-pVTZ(DZ) ab initio calculations. 20,000 classical trajectories are calculated on this surface at each of five initial excess energies, spanning the excitation energies used in previous experimental studies, and translational, vibrational, and rotational distributions of the radical products are determined. For excess energies near the dissociation threshold, both the HCO and CH(3) products are vibrationally cold; there is a small amount of HCO rotational excitation and little CH(3) rotational excitation, and the reaction energy is partitioned dominantly (>90% at threshold) into relative translational motion. Close to threshold the HCO and CH(3) rotational distributions are symmetrically shaped, resembling a Gaussian function, in agreement with observed experimental HCO rotational distributions. As the excess energy increases the calculated HCO and CH(3) rotational distributions are observed to change from a Gaussian shape at threshold to one more resembling a Boltzmann distribution, a behavior also seen by various experimental groups. Thus the distribution of energy in these rotational degrees of freedom is observed to change from nonstatistical to apparently statistical, as excess energy increases. As the energy above threshold increases all the internal and external degrees of freedom are observed to gain population at a similar rate, broadly consistent with equipartitioning of the available energy at the transition state. These observations generally support the practice of separating the reaction dynamics into two reservoirs: an impulsive reservoir, fed by the exit channel dynamics, and a statistical reservoir, supported by the random distribution of excess energy above the barrier. The HCO rotation, however, is favored by approximately a factor of 3 over the statistical prediction. Thus, at sufficiently high excess energies, although the HCO rotational distribution may be considered statistical, the partitioning of energy into HCO rotation is not.One of the authors D.L.C. acknowledges the financial support of an Australian Postgraduate Research Award. This work has also been supported in large by Grant No. A00104447 from the Australian Research Council and by grants of computer time from the Australian Partnership in Advanced Computing APAC National Merit Allocation Scheme

    The Circumstellar Disk of the Butterfly Star in Taurus

    Full text link
    We present a model of the circumstellar environment of the so-called ``Butterfly Star'' in Taurus (IRAS 04302+2247). The appearance of this young stellar object is dominated by a large circumstellar disk seen edge-on and the light scattering lobes above the disk. The model is based on multi-wavelength continuum observations: Millimeter maps and high-resolution near-infrared images obtained with HST/NICMOS. It was found that the disk and envelope parameters are comparable with those of the circumstellar environment of other young stellar objects. A main result is that the dust properties must be different in the circumstellar disk and in the envelope: While a grain size distribution with grain radii up to 100 micron is required to reproduce the millimeter observations of the disk, the envelope is dominated by smaller grains similar to those of the interstellar medium. Preprint with high figure quality available at: http://spider.ipac.caltech.edu/staff/swolf/homepage/public/preprints/i04302.psComment: 32 pages, 9 figure

    Impact of Periodic Follow-Up Testing Among Urban American Indian Women With Impaired Fasting Glucose

    Get PDF
    of periodic follow-up testing among urban American Indian women with impaired fasting glucose. Prev Chronic Di

    Acute exacerbations of chronic obstructive pulmonary disease are associated with decreased CD4+ & CD8+ T cells and increased growth & differentiation factor-15 (GDF-15) in peripheral blood

    Get PDF
    Abstract Background Although T cells, especially CD8+, have been implicated in chronic obstructive pulmonary disease (COPD) pathogenesis, their role during acute exacerbations (AE-COPD) is uncertain. Methods We recruited subjects with COPD and a history of previous AE-COPD and studied them quarterly to collect blood and spontaneously expectorated sputum while stable. During exacerbations (defined by a change in symptoms plus physician diagnosis and altered medications), we collected blood and sputum before administering antibiotics or steroids. We used flow cytometry to identify leukocytes in peripheral blood, plus LuminexÂź analysis or ELISA to determine levels of inflammatory biomarkers in serum and sputum supernatants. Results Of 33 enrolled subjects, 13 participated in multiple stable visits and had ≄1 AE-COPD visit, yielding 18 events with paired data. Flow cytometric analyses of peripheral blood demonstrated decreased CD4+ and CD8+ T cells during AE-COPD (both absolute and as a percentage of all leukocytes) and significantly increased granulocytes, all of which correlated significantly with serum C-reactive protein (CRP) concentrations. No change was observed in other leukocyte populations during AE-COPD, although the percentage of BDCA-1+ dendritic cells expressing the activation markers CD40 and CD86 increased. During AE-COPD, sICAM-1, sVCAM-1, IL-10, IL-15 and GDF-15 increased in serum, while in sputum supernatants, CRP and TIMP-2 increased and TIMP-1 decreased. Conclusions The decrease in CD4+ and CD8+ T cells (but not other lymphocyte subsets) in peripheral blood during AE-COPD may indicate T cell extravasation into inflammatory sites or organized lymphoid tissues. GDF-15, a sensitive marker of cardiopulmonary stress that in other settings independently predicts reduced long-term survival, is acutely increased in AE-COPD. These results extend the concept that AE-COPD are systemic inflammatory events to which adaptive immune mechanisms contribute. Trial registration NCT00281216 , ClinicalTrials.gov.http://deepblue.lib.umich.edu/bitstream/2027.42/112169/1/12931_2015_Article_251.pd

    Acute exacerbations of chronic obstructive pulmonary disease are associated with decreased CD4+ & CD8+ T cells and increased growth & differentiation factor-15 (GDF-15) in peripheral blood

    Full text link
    Abstract Background Although T cells, especially CD8+, have been implicated in chronic obstructive pulmonary disease (COPD) pathogenesis, their role during acute exacerbations (AE-COPD) is uncertain. Methods We recruited subjects with COPD and a history of previous AE-COPD and studied them quarterly to collect blood and spontaneously expectorated sputum while stable. During exacerbations (defined by a change in symptoms plus physician diagnosis and altered medications), we collected blood and sputum before administering antibiotics or steroids. We used flow cytometry to identify leukocytes in peripheral blood, plus LuminexÂź analysis or ELISA to determine levels of inflammatory biomarkers in serum and sputum supernatants. Results Of 33 enrolled subjects, 13 participated in multiple stable visits and had ≄1 AE-COPD visit, yielding 18 events with paired data. Flow cytometric analyses of peripheral blood demonstrated decreased CD4+ and CD8+ T cells during AE-COPD (both absolute and as a percentage of all leukocytes) and significantly increased granulocytes, all of which correlated significantly with serum C-reactive protein (CRP) concentrations. No change was observed in other leukocyte populations during AE-COPD, although the percentage of BDCA-1+ dendritic cells expressing the activation markers CD40 and CD86 increased. During AE-COPD, sICAM-1, sVCAM-1, IL-10, IL-15 and GDF-15 increased in serum, while in sputum supernatants, CRP and TIMP-2 increased and TIMP-1 decreased. Conclusions The decrease in CD4+ and CD8+ T cells (but not other lymphocyte subsets) in peripheral blood during AE-COPD may indicate T cell extravasation into inflammatory sites or organized lymphoid tissues. GDF-15, a sensitive marker of cardiopulmonary stress that in other settings independently predicts reduced long-term survival, is acutely increased in AE-COPD. These results extend the concept that AE-COPD are systemic inflammatory events to which adaptive immune mechanisms contribute. Trial registration NCT00281216 , ClinicalTrials.gov.http://deepblue.lib.umich.edu/bitstream/2027.42/134660/1/12931_2015_Article_251.pd

    Emissions from Ethanol-Gasoline Blends: A Single Particle Perspective

    Get PDF
    Due to its agricultural origin and function as a fuel oxygenate, ethanol is being promoted as an alternative biomass-based fuel for use in spark ignition engines, with mandates for its use at state and regional levels. While it has been established that the addition of ethanol to a fuel reduces the particulate mass concentration in the exhaust, little attention has been paid to changes in the physicochemical properties of the emitted particles. In this work, a dynamometer-mounted GM Quad-4 spark ignition engine run without aftertreatment at 1,500 RPM and 100% load was used with four different fuel blends, containing 0, 20, 40 and 85 percent ethanol in gasoline. This allowed the effects of the fuel composition to be isolated from other effects. Instrumentation employed included two Aerosol Time-of-Flight Mass Spectrometers covering different size ranges for analysis of single particle composition, an Aethalometer for black carbon, a Scanning Mobility Particle Sizer for particle size distributions, a Photoelectric Aerosol Sensor for particle-bound polycyclic aromatic hydrocarbon (PAH) species and gravimetric filter measurements for particulate mass concentrations. It was found that, under the conditions investigated here, additional ethanol content in the fuel changes the particle size distribution, especially in the accumulation mode, and decreases the black carbon and total particulate mass concentrations. The molecular weight distribution of the PAHs was found to decrease with added ethanol. However, PAHs produced from higher ethanol-content fuels are associated with NO2 − (m/z—46) in the single-particle mass spectra, indicating the presence of nitro-PAHs. Compounds associated with the gasoline (e.g., sulfur-containing species) are diminished due to dilution as ethanol is added to the fuel relative to those associated with the lubricating oil (e.g., calcium, zinc, phosphate) in the single particle spectra. These changes have potential implications for the health effect impacts of particulate emissions from biofuel blends

    High-Throughput Screening Data Interpretation in the Context of In Vivo Transcriptomic Responses to Oral Cr(VI) Exposure

    Get PDF
    The toxicity of hexavalent chromium [Cr(VI)] in drinking water has been studied extensively, and available in vivo and in vitro studies provide a robust dataset for application of advanced toxicological tools to inform the mode of action (MOA). This study aimed to contribute to the understanding of Cr(VI) MOA by evaluating high-throughput screening (HTS) data and other in vitro data relevant to Cr(VI), and comparing these findings to robust in vivo data, including transcriptomic profiles in target tissues. Evaluation of Tox21 HTS data for Cr(VI) identified 11 active assay endpoints relevant to the Ten Key Characteristics of Carcinogens (TKCCs) that have been proposed by other investigators. Four of these endpoints were related to TP53 (tumor protein 53) activation mapping to genotoxicity (KCC#2), and four were related to cell death/proliferation (KCC#10). HTS results were consistent with other in vitro data from the Comparative Toxicogenomics Database. In vitro responses were compared to in vivo transcriptomic responses in the most sensitive target tissue, the duodenum, of mice exposed to ≀ 180 ppm Cr(VI) for 7 and 90 days. Pathways that were altered both in vitro and in vivo included those relevant to cell death/proliferation. In contrast, pathways relevant to p53/DNA damage were identified in vitro but not in vivo. Benchmark dose modeling and phenotypic anchoring of in vivo transcriptomic responses strengthened the finding that Cr(VI) causes cell stress/injury followed by proliferation in the mouse duodenum at high doses. These findings contribute to the body of evidence supporting a non-mutagenic MOA for Cr(VI)-induced intestinal cancer
    • 

    corecore