1,449 research outputs found

    EFFECT OF A TRANSVERSE MAGNETIC FIELD ON VERTICAL TWO-PHASE FLOW THROUGH A RECTANGULAR CHANNEL

    Full text link

    Saturated Critical Heat Flux in a Multi-Microchannel Heat Sink Fed by a Split Flow System

    Get PDF
    An extensive experimental campaign has been carried out for the measurement of saturated critical heat flux in a multi-microchannel copper heat sink. The heat sink was formed by 29 parallel channels that were 199 ÎŒm wide and 756 ÎŒm deep. In order to increase the critical heat flux and reduce the two-phase pressure drop, a split flow system was implemented with one central inlet at the middle of the channels and two outlets at either end. The base critical heat flux was measured using three HFC Refrigerants (R134a, R236fa and R245fa) for mass fluxes ranging from 250 to 1500 kg/m2 s, inlet subcoolings from −25 to −5 K and saturation temperatures from 20 to 50 °C. The parametric effects of mass velocity, saturation temperature and inlet subcooling were investigated. The analysis showed that significantly higher CHF was obtainable with the split flow system (one inlet–two outlets) compared to the single inlet–single outlet system, providing also a much lower pressure drop. Notably several existing predictive methods matched the experimental data quite well and quantitatively predicted the benefit of higher CHF of the split flow

    Design study of superconducting magnets for a combustion magnetohydrodynamic (MHD) generator

    Get PDF
    Design trade off studies for 13 different superconducting magnet systems were carried out. Based on these results, preliminary design characteristics were prepared for several superconducting magnet systems suitable for use with a combustion driven MHD generator. Each magnet generates a field level of 8 T in a volume 1.524 m (60 in.) long with a cross section 0.254 m x 0.254 m (10 in. x 10 in.) at the inlet and 0.406 m x .406 m (16 in. x 16 in.) at the outlet. The first design involves a racetrack coil geometry intended for operation at 4.2 K; the second design uses a racetrack geometry at 2.0 K; and the third design utilizes a rectangular saddle geometry at 4.2 K. Each case was oriented differently in terms of MHD channel axis and main field direction relative to gravity in order to evaluate fabrication ease. All cases were designed such that the system could be disassembled to allow for alteration of field gradient in the MHD channel by changing the angle between coils. Preliminary design characteristics and assembly drawings were generated for each case

    Advanced superconducting magnets investigation

    Get PDF
    Mathematical models for steady state behavior of composite superconductors and experimental verification using magnet coi

    Two-Phase Cooling of Targets and Electronics for Particle Physics Experiments

    Get PDF
    An overview of the LTCM lab’s decade of experience with two-phase cooling research for computer chips and power electronics will be described with its possible beneficial application to high-energy physics experiments. Flow boiling in multi-microchannel cooling elements in silicon (or aluminium) have the potential to provide high cooling rates (up to as high as 350 W/cm2), stable and uniform temperatures of targets and electronics, and lightweight construction while also minimizing the fluid inventory. An overview of two-phase flow and boiling research in single microchannels and multi-microchannel test elements will be presented together with video images of these flows. The objective is to stimulate discussion on the use of two-phase cooling in these demanding applications, including the possible use of CO2

    Undulations on the surface of elongated bubbles in confined gas-liquid flows

    Get PDF
    © 2017 American Physical Society. A systematic analysis is presented of the undulations appearing on the surface of long bubbles in confined gas-liquid flows. CFD simulations of the flow are performed with a self-improved version of the open-source solver ESI OpenFOAM (release 2.3.1), for Ca=0.002-0.1 and Re=0.1-1000, where Ca=ÎŒU/σ and Re=2ρUR/ÎŒ, with ÎŒ and ρ being, respectively, the viscosity and density of the liquid, σ the surface tension, U the bubble velocity, and R the tube radius. A model, based on an extension of the classical axisymmetric Bretherton theory, accounting for inertia and for the curvature of the tube's wall, is adopted to better understand the CFD results. The thickness of the liquid film, and the wavelength and decay rate of the undulations extracted from the CFD simulations, agree well with those obtained with the theoretical model. Inertial effects appear when the Weber number of the flow We=CaRe=O(10-1) and are manifest by a larger number of undulation crests that become evident on the surface of the rear meniscus of the bubble. This study demonstrates that the necessary bubble length for a flat liquid film region to exist between the rear and front menisci rapidly increases above 10R when Ca>0.01 and the value of the Reynolds number approaches 1000

    Pore-scale analysis of the minimum liquid film thickness around elongated bubbles in confined gas-liquid flows

    Get PDF
    © 2017 Elsevier Ltd The fluid mechanics of elongated bubbles in confined gas-liquid flows in micro-geometries is important in pore-scale flow processes for enhanced oil recovery and mobilization of colloids in unsaturated soil. The efficiency of such processes is traditionally related to the thickness of the liquid film trapped between the elongated bubble and the pore's wall, which is assumed constant. However, the surface of long bubbles presents undulations in the vicinity of the rear meniscus, which may significantly decrease the local thickness of the liquid film, thus impacting the process of interest. This study presents a systematic analysis of these undulations and the minimum film thickness induced in the range Ca=0.001-0.5 and Re=0.1-2000. Pore-scale Computational Fluid Dynamics (CFD) simulations are performed with a self-improved version of the opensource solver ESI OpenFOAM which is based on a Volume of Fluid method to track the gas-liquid interface. A lubrication model based on the extension of the classical axisymmetric Bretherton theory is utilized to better understand the CFD results. The profiles of the rear meniscus of the bubble obtained with the lubrication model agree fairly well with those extracted from the CFD simulations. This study shows that the Weber number of the flow, We=CaRe, is the parameter that best describes the dynamics of the interfacial waves. When We 0.1, a larger number of wave crests becomes evident on the surface of the rear meniscus of the bubble. The liquid film thickness at the crests of the undulations thins considerably as the Reynolds number is increased, down to less than 60% of the value measured in the flat film region. This may significantly influence important environmental processes, such as the detachment and mobilization of micron-sized pollutants and pathogenic micro-organisms adhering at the pore's wall in unsaturated soil

    Influencing factors on flow boiling of carbon dioxide in enhanced tubes and comparison with correlations

    Get PDF
    Carbon dioxide two-phase flow characteristics are different from those of conventional refrigerants, due to the CO2 particular thermodynamic and transport properties obtained by working at high reduced pressures. Moreover, the use of peculiar heat transfer surfaces such as grooves and internal fins are often preferred to enhance the boiling heat transfer performance. This paper collects CO2 flow boiling heat transfer coefficient data from different independent databases available in scientific literature, regarding both smooth and enhanced geometries and a wide range of operative conditions, that are typical of refrigeration systems and heat pumps. The database for enhanced tubes covers internal diameters from 0.8 to 8.92 mm, saturation temperatures from -30 to +20 °C, imposed heat fluxes from 1.67 to 60 kW/m2 and mass velocities from 75 to 800 kg/m2s, collecting more than 800 points. Heat transfer data for smooth and enhanced surfaces under the same conditions are collected, in order to measure the enhancement and to correlate it to the geometry augmentation. The assessment of quoted prediction methods explicitly developed for carbon dioxide is finally carried out, with a proposal for a correction factor

    Fractal analysis of resting state fMRI signals in adults with ADHD

    Get PDF
    The fractal concept developed by Mandelbrot provides a useful tool for examining a variety of naturally occurring phenomena. Fractals are signals that display scale-invariant or self-similar behaviour. They can be found everywhere in nature including fractional Gaussian noise (fGn). Resting state fMRI signals can be modelled as fGn which makes them appropriate for fractal analysis. The Hurst exponent, H, is a measure of fractal processes and has values ranging between 0 and 1. Fractional Gaussian noise with 0<H<0.5 demonstrates negatively autocorrelated or antipersistent behaviour; fGn with 0.5<H<1 demonstrates a positively correlated, relatively persistent, predictable, long memory behaviour; and fGn with H = 0.5 corresponds to classical Gaussian white noise. In the present study, we aim to estimate the fractal behaviour of adult ADHD patients when compared to age-matched healthy controls using dispersional analysis. We hypothesize that ADHD patients will demonstrate more predictable (higher H values) fractal behaviour. Ten ADHD patients (5 female, mean age (32.60±10.46)) and ten controls (7 female, mean age (30.10±8.49)) were brain imaged by 3T MRI scanner. All patients and control participants completed the Conners’ Adult ADHD Rating Scales (ADHD scores). Our analysis shows that the ADHD patients demonstrate more positively correlated, relatively persistent, predictable and longer memory fractal behaviour in regards to healthy controls. The discriminated brain regions are part of the frontal-striatal-cerebellar circuits and are consistent with the hypothesis of abnormal frontal-striatal-cerebellar circuits in ADHD. We have shown that the analysis of fractal behaviour may be a useful tool in revealing abnormalities in ADHD brain dynamics
    • 

    corecore