2 research outputs found

    Combining Graphical and Analytical Methods with Molecular Simulations To Analyze Time-Resolved FRET Measurements of Labeled Macromolecules Accurately

    No full text
    Förster resonance energy transfer (FRET) measurements from a donor, D, to an acceptor, A, fluorophore are frequently used <i>in vitro</i> and in live cells to reveal information on the structure and dynamics of DA labeled macromolecules. Accurate descriptions of FRET measurements by molecular models are complicated because the fluorophores are usually coupled to the macromolecule via flexible long linkers allowing for diffusional exchange between multiple states with different fluorescence properties caused by distinct environmental quenching, dye mobilities, and variable DA distances. It is often assumed for the analysis of fluorescence intensity decays that DA distances and D quenching are uncorrelated (homogeneous quenching by FRET) and that the exchange between distinct fluorophore states is slow (quasistatic). This allows us to introduce the FRET-induced donor decay, ε<sub>D</sub>(<i>t</i>), a function solely depending on the species fraction distribution of the rate constants of energy transfer by FRET, for a convenient joint analysis of fluorescence decays of FRET and reference samples by integrated graphical and analytical procedures. Additionally, we developed a simulation toolkit to model dye diffusion, fluorescence quenching by the protein surface, and FRET. A benchmark study with simulated fluorescence decays of 500 protein structures demonstrates that the quasistatic homogeneous model works very well and recovers for single conformations the average DA distances with an accuracy of < 2%. For more complex cases, where proteins adopt multiple conformations with significantly different dye environments (heterogeneous case), we introduce a general analysis framework and evaluate its power in resolving heterogeneities in DA distances. The developed fast simulation methods, relying on Brownian dynamics of a coarse-grained dye in its sterically accessible volume, allow us to incorporate structural information in the decay analysis for heterogeneous cases by relating dye states with protein conformations to pave the way for fluorescence and FRET-based dynamic structural biology. Finally, we present theories and simulations to assess the accuracy and precision of steady-state and time-resolved FRET measurements in resolving DA distances on the single-molecule and ensemble level and provide a rigorous framework for estimating approximation, systematic, and statistical errors

    Triphosphate Induced Dimerization of Human Guanylate Binding Protein 1 Involves Association of the C‑Terminal Helices: A Joint Double Electron–Electron Resonance and FRET Study

    No full text
    Human guanylate binding protein 1 (hGBP1) is a member of the dynamin superfamily of large GTPases. During GTP hydrolysis, the protein undergoes structural changes leading to self-assembly. Previous studies have suggested dimerization of the protein by means of its large GTPase (LG) domain and significant conformational changes in helical regions near the LG domain and at its C-terminus. We used site-directed labeling and a combination of pulsed electron paramagnetic resonance and time-resolved fluorescence spectroscopy for structural investigations on hGBP1 dimerization and conformational changes of its C-terminal helix α13. Consistent distance measurements by double electron–electron resonance (DEER, also named pulse double electron resonance = PELDOR) spectroscopy and Förster resonance energy transfer (FRET) measurements using model-free analysis approaches revealed a close interaction of the two α13 helices in the hGBP1 dimer formed upon binding of the nonhydrolyzable nucleoside triphosphate derivate GppNHp. In molecular dynamics (MD) simulations, these two helices form a stable dimer in solution. Our data show that dimer formation of hGBP1 involves multiple spatially distant regions of the protein, namely, the N-terminal LG domain and the C-terminal helices α13. The contacts formed between the two α13 helices and the resulting juxtaposition are expected to be a key step for the physiological membrane localization of hGBP1 through the farnesyl groups attached to the end of α13
    corecore