318 research outputs found
Electrified Fuzzy Spheres and Funnels in Curved Backgrounds
We use the non-Abelian DBI action to study the dynamics of coincident
-branes in an arbitrary curved background, with the presence of a
homogenous world-volume electric field. The solutions are natural extensions of
those without electric fields, and imply that the spheres will collapse toward
zero size. We then go on to consider the intersection in a curved
background and find various dualities and automorphisms of the general
equations of motion. It is possible to map the dynamical equation of motion to
the static one via Wick rotation, however the additional spatial dependence of
the metric prevents this mapping from being invertible. Instead we find that a
double Wick rotation leaves the static equation invariant. This is very
different from the behaviour in Minkowski space. We go on to construct the most
general static fuzzy funnel solutions for an arbitrary metric either by solving
the static equations of motion, or by finding configurations which minimise the
energy. As a consistency check we construct the Abelian -brane world-volume
theory in the same generic background and find solutions consistent with energy
minimisation. In the 5-brane background we find time dependent solutions to
the equations of motion, representing a time dependent fuzzy funnel. These
solutions match those obtained from the -string picture to leading order
suggesting that the action in the large limit does not need corrections. We
conclude by generalising our solutions to higher dimensional fuzzy funnels.Comment: 38 pages, Latex; references adde
Correspondence between kinematical backreaction and scalar field cosmologies - the `morphon field'
Spatially averaged inhomogeneous cosmologies in classical general relativity
can be written in the form of effective Friedmann equations with sources that
include backreaction terms. In this paper we propose to describe these
backreaction terms with the help of a homogeneous scalar field evolving in a
potential; we call it the `morphon field'. This new field links classical
inhomogeneous cosmologies to scalar field cosmologies, allowing to reinterpret,
e.g., quintessence scenarios by routing the physical origin of the scalar field
source to inhomogeneities in the Universe. We investigate a one-parameter
family of scaling solutions to the backreaction problem. Subcases of these
solutions (all without an assumed cosmological constant) include
scale-dependent models with Friedmannian kinematics that can mimic the presence
of a cosmological constant or a time-dependent cosmological term. We explicitly
reconstruct the scalar field potential for the scaling solutions, and discuss
those cases that provide a solution to the Dark Energy and coincidence
problems. In this approach, Dark Energy emerges from morphon fields, a
mechanism that can be understood through the proposed correspondence: the
averaged cosmology is characterized by a weak decay (quintessence) or growth
(phantom quintessence) of kinematical fluctuations, fed by `curvature energy'
that is stored in the averaged 3-Ricci curvature. We find that the late-time
trajectories of those models approach attractors that lie in the future of a
state that is predicted by observational constraints.Comment: 36 pages and 6 Figures, matches published version in Class.Quant.Gra
Statefinder and Om Diagnostics for Interacting New Holographic Dark Energy Model and Generalized Second Law of Thermodynamics
In this work, we have considered that the flat FRW universe is filled with
the mixture of dark matter and the new holographic dark energy. If there is an
interaction, we have investigated the natures of deceleration parameter,
statefinder and diagnostics. We have examined the validity of the first
and generalized second laws of thermodynamics under these interactions on the
event as well as apparent horizon. It has been observed that the first law is
violated on the event horizon. However, the generalized second law is valid
throughout the evolution of the universe enveloped by the apparent horizon.
When the event horizon is considered as the enveloping horizon, the generalized
second law is found to break down excepting at late stage of the universe.Comment: 9 pages, 13 figure
Male reproductive health and environmental xenoestrogens
EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright.
Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright.
Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.Male reproductive health has deteriorated in many countries during the last few decades. In the 1990s, declining semen quality has been reported from Belgium, Denmark, France, and Great Britain. The incidence of testicular cancer has increased during the same time incidences of hypospadias and cryptorchidism also appear to be increasing. Similar reproductive problems occur in many wildlife species. There are marked geographic differences in the prevalence of male reproductive disorders. While the reasons for these differences are currently unknown, both clinical and laboratory research suggest that the adverse changes may be inter-related and have a common origin in fetal life or childhood. Exposure of the male fetus to supranormal levels of estrogens, such as diethlylstilbestrol, can result in the above-mentioned reproductive defects. The growing number of reports demonstrating that common environmental contaminants and natural factors possess estrogenic activity presents the working hypothesis that the adverse trends in male reproductive health may be, at least in part, associated with exposure to estrogenic or other hormonally active (e.g., antiandrogenic) environmental chemicals during fetal and childhood development. An extensive research program is needed to understand the extent of the problem, its underlying etiology, and the development of a strategy for prevention and intervention.Supported by EU Contract BMH4-CT96-0314
Statefinder diagnostic and stability of modified gravity consistent with holographic and new agegraphic dark energy
Recently one of us derived the action of modified gravity consistent with the
holographic and new-agegraphic dark energy. In this paper, we investigate the
stability of the Lagrangians of the modified gravity as discussed in [M. R.
Setare, Int. J. Mod. Phys. D 17 (2008) 2219; M. R. Setare, Astrophys. Space
Sci. 326 (2010) 27]. We also calculate the statefinder parameters which
classify our dark energy model.Comment: 12 pages, 2 figures, accepted by Gen. Relativ. Gravi
Holographic dark energy in a non-flat universe with Granda-Oliveros cut-off
Motivated by Granda and Oliveros (GO) model, we generalize their work to the
non-flat case. We obtain the evolution of the dark energy density, the
deceleration and the equation of state parameters for the holographic dark
energy model in a non-flat universe with GO cut-off. In the limiting case of a
flat universe, i.e. , all results given in GO model are obtained.Comment: 11 pages, 5 figure
Cosmological evolution and statefinder diagnostic for new holographic dark energy model in non flat universe
In this paper, the holographic dark energy model with new infrared cut-off
proposed by Granda and Oliveros has been investigated in spatially non flat
universe. The dependency of the evolution of equation of state, deceleration
parameter and cosmological evolution of Hubble parameter on the parameters of
new HDE model are calculated. Also, the statefinder parameters and in
this model are derived and the evolutionary trajectories in plane are
plotted. We show that the evolutionary trajectories are dependent on the model
parameters of new HDE model. Eventually, in the light of SNe+BAO+OHD+CMB
observational data, we plot the evolutionary trajectories in and
planes for best fit values of the parameters of new HDE model.Comment: 11 pages, 5 figures, Accepted by Astrophys. Space Sc
A Quintessentially Geometric Model
We consider string inspired cosmology on a solitary -brane moving in the
background of a ring of branes located on a circle of radius . The motion of
the -brane transverse to the plane of the ring gives rise to a radion field
which can be mapped to a massive non-BPS Born-Infeld type field with a cosh
potential. For certain bounds of the brane tension we find an inflationary
phase is possible, with the string scale relatively close to the Planck scale.
The relevant perturbations and spectral indices are all well within the
expected observational bounds. The evolution of the universe eventually comes
to be dominated by dark energy, which we show is a late time attractor of the
model. However we also find that the equation of state is time dependent, and
will lead to late time Quintessence.Comment: 11 pages, 3 figures. References and comments adde
Towards an Observational Appraisal of String Cosmology
We review the current observational status of string cosmology when
confronted with experimental datasets. We begin by defining common
observational parameters and discuss how they are determined for a given model.
Then we review the observable footprints of several string theoretic models,
discussing the significance of various potential signals. Throughout we comment
on present and future prospects of finding evidence for string theory in
cosmology, and on significant issues for the future.Comment: Review accepted for publication in the CQG focus issue on string
cosmology. Minor clarifications and references adde
Bacterial artificial chromosomes as analytical basis for gene transcriptional machineries
Bacterial Artificial Chromosomes (BACs) had been minimal components of various genome-sequencing projects, constituting perfect analytical basis for functional genomics. Here we describe an enhancer screening strategy in which BAC clones that cover any genomic segments of interest are modified to harbor a reporter cassette by transposon tagging, then processed to carry selected combinations of gene regulatory modules by homologous recombination mediated systematic deletions. Such engineered BAC-reporter constructs in bacterial cells are ready for efficient transgenesis in mice to evaluate activities of gene regulatory modules intact or absent in the constructs. By utilizing the strategy, we could speedily identify a critical genomic fragment for spatio-temporally regulated expression of a mouse cadherin gene whose structure is extraordinarily huge and intricate. This BAC-based methodology would hence provide a novel screening platform for gene transcriptional machineries that dynamically fluctuate during development, pathogenesis and/or evolution
- …