10,401 research outputs found

    The determinants of direct air fares to Cleveland: how competitive?

    Get PDF
    Using a model developed to examine the determinants of air fares, the authors discuss the relationship between airline industry competitiveness and fare increases.Airlines ; Competition ; Cleveland (Ohio)

    Reparameterization Invariance for Collinear Operators

    Get PDF
    We discuss restrictions on operators in the soft-collinear effective theory (SCET) which follow from the ambiguity in the decomposition of collinear momenta and the freedom in the choice of light-like basis vectors nn and nˉ\bar n. Invariance of SCET under small changes in nn and/or nˉ\bar n implies a symmetry of the effective theory that constrains the form of allowed operators with collinear fields. The restrictions occur at a given order in the power counting as well as between different orders. As an example, we present the complete set of higher order operators that are related to the collinear quark kinetic term.Comment: 11 page

    U.S. air passenger service: a taxonomy of route networks, hub locations, and competition

    Get PDF
    In this paper, we analyze the service provided by the 13 largest U.S. passenger airlines to the 100 most populous U.S. metropolitan areas in 1989. We classify the route systems by their nature and geographical extent using a variety of measures based on route-level data. We then identify individual airline hub locations and derive and calculate several measures of the extent of competition both on individual routes and at the airports in our sample. The results show the wide diversity of route networks that existed in the airline industry in 1989--a phenomenon that may help to explain the failure of several major carriers since then.Airlines

    The determinants of airport hub locations, service, and competition

    Get PDF
    Although the airline industry has been studied extensively since passage of the Airline Deregulation Act of 1978, relatively little effort has gone into examining how hub location affects the level of service and degree of competition found at airports in the system. To help close this gap, we investigate the geographic distribution of airline hub operations, the level of service, and the extent of competition at 112 major U.S. airports, extending previous work by Bauer (1987) and Butler and Huston (1989). Our key innovation is that we derive our measures of service and competition from indicator matrices that describe each airline's route system.Airlines

    Soft-Collinear Messengers: A New Mode in Soft-Collinear Effective Theory

    Full text link
    It is argued that soft-collinear effective theory for processes involving both soft and collinear partons, such as exclusive B-meson decays, should include a new mode in addition to soft and collinear fields. These "soft-collinear messengers" can interact with both soft and collinear particles without taking them far off-shell. They thus can communicate between the soft and collinear sectors of the theory. The relevance of the new mode is demonstrated with an explicit example, and the formalism incorporating the corresponding quark and gluon fields into the effective Lagrangian is developed.Comment: 22 pages, 5 figures. Extended Section 6, clarifying the relevance of different types of soft-collinear interaction

    Fungi isolated from Miscanthus and sugarcane: biomass conversion, fungal enzymes, and hydrolysis of plant cell wall polymers.

    Get PDF
    BackgroundBiofuel use is one of many means of addressing global change caused by anthropogenic release of fossil fuel carbon dioxide into Earth's atmosphere. To make a meaningful reduction in fossil fuel use, bioethanol must be produced from the entire plant rather than only its starch or sugars. Enzymes produced by fungi constitute a significant percentage of the cost of bioethanol production from non-starch (i.e., lignocellulosic) components of energy crops and agricultural residues. We, and others, have reasoned that fungi that naturally deconstruct plant walls may provide the best enzymes for bioconversion of energy crops.ResultsPreviously, we have reported on the isolation of 106 fungi from decaying leaves of Miscanthus and sugarcane (Appl Environ Microbiol 77:5490-504, 2011). Here, we thoroughly analyze 30 of these fungi including those most often found on decaying leaves and stems of these plants, as well as four fungi chosen because they are well-studied for their plant cell wall deconstructing enzymes, for wood decay, or for genetic regulation of plant cell wall deconstruction. We extend our analysis to assess not only their ability over an 8-week period to bioconvert Miscanthus cell walls but also their ability to secrete total protein, to secrete enzymes with the activities of xylanases, exocellulases, endocellulases, and beta-glucosidases, and to remove specific parts of Miscanthus cell walls, that is, glucan, xylan, arabinan, and lignin.ConclusionThis study of fungi that bioconvert energy crops is significant because 30 fungi were studied, because the fungi were isolated from decaying energy grasses, because enzyme activity and removal of plant cell wall components were recorded in addition to biomass conversion, and because the study period was 2 months. Each of these factors make our study the most thorough to date, and we discovered fungi that are significantly superior on all counts to the most widely used, industrial bioconversion fungus, Trichoderma reesei. Many of the best fungi that we found are in taxonomic groups that have not been exploited for industrial bioconversion and the cultures are available from the Centraalbureau voor Schimmelcultures in Utrecht, Netherlands, for all to use

    A Neural Network Model for the Self-Organization of Cortical Grating Cells

    Get PDF
    A neural network model with incremental Hebbian learning of afferent and lateral synaptic couplings is proposed,which simulates the activity-dependent self-organization of grating cells in upper layers of striate cortex. These cells, found in areas V1 and V2 of the visual cortex of monkeys, respond vigorously and exclusively to bar gratings of a preferred orientation and periodicity. Response behavior to varying contrast and to an increasing number of bars in the grating show threshold and saturation effects. Their location with respect to the underlying orientation map and their nonlinear response behavior are investigated. The number of emerging grating cells is controlled in the model by the range and strength of the lateral coupling structure

    Spin-Hall magnetoresistance and spin Seebeck effect in spin-spiral and paramagnetic phases of multiferroic CoCr2O4 films

    Get PDF
    We report on the spin-Hall magnetoresistance (SMR) and spin Seebeck effect (SSE) in multiferroic CoCr2O4 (CCO) spinel thin films with Pt contacts. We observe a large enhancement of both signals below the spin-spiral (Ts = 28 K) and the spin lock-in transitions (T_{lock_in} = 14 K). The SMR and SSE response in the spin lock-in phase are one order of magnitude larger than those observed at the ferrimagnetic transition temperature (Tc = 94 K), which indicates that the interaction between spins at the Pt|CCO interface is more efficient in the non-collinear magnetic state below Ts and T_{lock-in}. At T > Tc, magnetic field-induced SMR and SSE signals are observed, which can be explained by a high interface susceptibility. Our results show that the spin transport at the Pt|CCO interface is sensitive to the magnetic phases but cannot be explained solely by the bulk magnetization

    Modeling of the electronic state of the High-Temperature Superconductor LaCuO: Phonon dynamics and charge response

    Full text link
    A modeling of the normal state of the p-doped high-temperature superconductors (HTSC's) is presented. This is achieved starting from a more conventional metallic phase for optimal- and overdoping and passing via the underdoped to the insulating state by consecutive orbital selective compressibility-incompressibility transitions in terms of sum rules for the charge response. The modeling is substantiated by corresponding phonon calculations. Extending investigations of the full dispersion and in particular of the strongly doping dependent anomalous phonon modes in LaCuO, which so far underpin our treatment of the density response of the electrons in the p-doped HTSC's, gives additional support for the modeling of the electronic state, compares well with recent experimental data and predicts the dispersion for the overdoped regime. Moreover, phonon densities of states have been calculated and compared for the insulating, underdoped, optimally doped and overdoped state of LaCuO. From our modeling of the normal state a consistent picture of the superconducting phase also can be extracted qualitatively pointing in the underdoped regime to a phase ordering transition. On the other hand, the modeling of the optimal and overdoped state is consistent with a quasi-particle picture with a well defined Fermi surface. Thus, in the latter case a Fermi surface instability with an evolution of pairs of well defined quasiparticles is possible and can lead to a BCS-type ordering. So, it is tempting to speculate that optimal TCT_C in the HTSC's marks a crossover region between these two forms of ordering.Comment: 18 RevTex pages, 10 figures, revised version, references updated, accepted for publication in Physical Review
    • …
    corecore