11 research outputs found

    A portable sensor system for the detection of human volatile compounds against transnational crime

    Get PDF
    Human smuggling accounts for a significant part of transnational organized crime, creating a growing threat to national and international security and putting at risk the health and lives of the people being smuggled. Early detection and interception of human beings hidden in containers or trucks are therefore of considerable importance, especially at key transportation hubs, such as at international borders and harbors. The major challenge is to provide fast inspection procedures without needing to open sealed trucks and containers. The detection of trace key volatile organic compounds, which includes aldehydes and ketones, emitted by humans can be used to rapidly determine human presence, requiring only several ml of air to be taken from inside a container. In this paper, we describe a prototype portable device for the rapid detection of hidden or entrapped people, employing a combined ion mobility spectrometer and sensor array system for obtaining a volatile signature of human presence. The detection limits of this combined analytical device are sufficiently low for use in sensing ketones and aldehydes being emitted by humans in closed containers. For easy handling by security personnel, a classification algorithm is applied that provides a simple YES or NO decision. With a training dataset of more than 1000 measurements, the algorithm achieved an area under curve of 0.9 for untrained scenarios. The field measurements show that two people need to stay in a car for between 20 and 30 minutes in order for the emitted trace volatile organic compounds to reach concentrations high enough for reliable detection with our analytical device

    A Receiver for Inductive Ear-to-Ear Communication

    No full text

    Low Power 24 GHz ad hoc Networking System Based on TDOA for Indoor Localization

    No full text
    This paper introduces the key elements of a novel low-power, high precision localization system based on Time-Difference-of-Arrival (TDOA) distance measurements. The combination of multiple localizable sensor nodes, leads to an ad hoc network. Besides the localization functionality this ad hoc network has the additional advantage of a communication interface. Due to this a flexible positioning of the master station for information collection and the detection of static and mobile nodes is possible. These sensor nodes work in the 24 GHz ISM (Industrial Scientific and Medical) frequency range and address several use cases and are able to improve various processes for production scheduling, logistics, quality management, medical applications and collection of geo information. The whole system design is explained briefly. Its core component is the frequency modulated continuous wave (FMCW) synthesizer suitable for high performance indoor localization. This research work focuses on power and size reduction of this crucial system component. The comparison of the first and second generation of the system shows a significant size and power reduction as well as an increased precision

    Remote Control System for Battery-Assisted Devices with 16 nW Standby Consumption

    No full text
    One of the biggest impacts of the vision ‘Internet of Things’ is the massive number of connected devices, where billions of nodes will exchange data, information and commands. While wireless systems offer advantages such as increased flexibility, they also introduce one major challenge: how to power each individual node. In many cases, there is no way around the use of batteries. To minimize the environmental impact, increasing the battery’s longevity is the most important factor. This paper introduces a wireless battery-assisted node that has a drastically reduced energy consumption in the standby mode. The state (on/off) will be changed by harvesting a radiofrequency signal. A latching switch connects or disconnects the load—for example, a microcontroller—and the battery. The switch is connected to a charge pump which converts an AC (alternating current) signal into a usable DC (direct current) control signal. An antenna is mounted to the charge pump via a matching network. An electromagnetic wave is emitted by a remote control switch that switches the system on and off. The used frequency is 868 MHz and therefore in the UHF RFID (ultra high frequency radio frequency identification) band. The measurement results show that the wireless node consumes less than 16 nW in the standby mode. The remote controlling is possible from a distance of more than 12 m . The presented system can be integrated in further work on a UHF RFID tag. Thus, the existing protocol standard can be used to identify the object to be switched. By custom commands, the switching request can be transmitted from the remote control (UHF RFID reader) to the switching node

    Numerical Optimization of a Fully Cross-Coupled Rectifier Circuit for Wireless Passive Ultra Low Power Sensor Nodes

    No full text
    In the context of the Internet of Things, billions of devices—especially sensors—will be linked together in the next few years. A core component of wireless passive sensor nodes is the rectifier, which has to provide the circuit with sufficient operating voltage. In these devices, the rectifier has to be as energy efficient as possible in order to guarantee an optimal operation. Therefore, a numerical optimization scheme is proposed in this paper, which is able to find a unique optimal solution for an integrated Complementary Metal-Oxide-Semiconductor (CMOS) rectifier circuit with Self-Vth-Cancellation (SVC). An exploration of the parameter space is carried out in order to generate a meaningful target function for enhancing the rectified power for a fixed communication distance. In this paper, a mean conversion efficiency is introduced, which is a more valid target function for optimization than the Voltage Conversion Efficiency (VCE) and the commonly used Power Conversion Efficiency (PCE) and is defined as the arithmetic mean between PCE and VCE. Various trade-offs between output voltage, PCE, VCE and MCE are shown, which provide valuable information for low power rectifier designs. With the proposed method, a rectifier in a low power 55 nm process from Globalfoundries (GF55LPe) is optimized and simulated at −30 dBm input power. A mean PCE of 63.33% and a mean VCE of 63.40% is achieved

    UHF RFID Prototyping Platform for ISO 29167 Decryption Based on an SDR

    No full text
    Ultra high frequency radio frequency identification (UHF RFID) is becoming a key technology in the Internet of Things. It allows the implementation of batteryless and wireless nodes, including sensors and actuators. Due to its possible transmission range of >10 m and potential to carry critical information, security is a highly important topic. For this reason, the International Organization for Standardization has published several crypto suites for UHF RFID within the ISO-29167 standard in 2014. Recently, research has focused on implementing those encryption features on the transponder side. However, currently no crypto enabled UHF RFID readers are available. In order to cope with the rapid development in this field, ‘open’ and flexible readers based on software defined radios are needed. They make it possible to quickly adapt the protocol and to test new functionalities such as encryption. This paper deals with the first implementation of the ISO 29167-19 standardized RAMON decryption on a software defined radio. The programming of this hardware is done in LabVIEW which allows for controlling the built-in transceiver modules. However, first measurements show that the decryption takes 51 s. This is because LabVIEW is not suitable for handling very large numbers like they are utilized in cryptography. Because such a long processing time is not feasible in experiments nor in a real-life scenarios, this method is not suitable for a prototyping platform. Thus, a different approach is chosen to optimize the decryption processing time. LabVIEW still provides the framework for handling the protocol and controlling the transceivers, but the decryption is performed in a Java application. In that way, the entire decryption process takes only about 2.2 ms, which is 23,318 times faster than the implementation in LabVIEW. Thus, this new approach meets the necessary timing requirements and is suitable for realistic application scenarios. The shown method allows development and testing of new functionalities in UHF RFID systems but may also be employed in any application that require long processing times in LabVIEW. Furthermore, the implementation of decryption features is the first necessary step towards a fully compliant, crypto enabled interrogator for UHF RFID, featuring a high adaptability
    corecore